scholarly journals The information content of Cosmic Infrared Background anisotropies

Author(s):  
Robert Reischke ◽  
Vincent Desjacques ◽  
Saleem Zaroubi

Abstract We use analytic computations to predict the power spectrum as well as the bispectrum of Cosmic Infrared Background (CIB) anisotropies. Our approach is based on the halo model and takes into account the mean luminosity-mass relation. The model is used to forecast the possibility to simultaneously constrain cosmological, CIB and halo occupation distribution (HOD) parameters in the presence of foregrounds. For the analysis we use wavelengths in eight frequency channels between 200 and 900 GHz with survey specifications given by Planck and LiteBird. We explore the sensitivity to the model parameters up to multipoles of ℓ = 1000 using auto- and cross-correlations between the different frequency bands. With this setting, cosmological, HOD and CIB parameters can be constrained to a few percent. Galactic dust is modeled by a power law and the shot noise contribution as a frequency dependent amplitude which are marginalized over. We find that dust residuals in the CIB maps only marginally influence constraints on standard cosmological parameters. Furthermore, the bispectrum yields tighter constraints (by a factor four in 1σ errors) on almost all model parameters while the degeneracy directions are very similar to the ones of the power spectrum. The increase in sensitivity is most pronounced for the sum of the neutrino masses. Due to the similarity of degeneracies a combination of both analysis is not needed for most parameters. This, however, might be due to the simplified bias description generally adopted in such halo model approaches.

2020 ◽  
Vol 496 (3) ◽  
pp. 3862-3869 ◽  
Author(s):  
Anatoly Klypin ◽  
Francisco Prada ◽  
Joyce Byun

ABSTRACT Making cosmological inferences from the observed galaxy clustering requires accurate predictions for the mean clustering statistics and their covariances. Those are affected by cosmic variance – the statistical noise due to the finite number of harmonics. The cosmic variance can be suppressed by fixing the amplitudes of the harmonics instead of drawing them from a Gaussian distribution predicted by the inflation models. Initial realizations also can be generated in pairs with 180○ flipped phases to further reduce the variance. Here, we compare the consequences of using paired-and-fixed versus Gaussian initial conditions on the average dark matter clustering and covariance matrices predicted from N-body simulations. As in previous studies, we find no measurable differences between paired-and-fixed and Gaussian simulations for the average density distribution function, power spectrum, and bispectrum. Yet, the covariances from paired-and-fixed simulations are suppressed in a complicated scale- and redshift-dependent way. The situation is particularly problematic on the scales of Baryon acoustic oscillations where the covariance matrix of the power spectrum is lower by only $\sim 20{{\ \rm per\ cent}}$ compared to the Gaussian realizations, implying that there is not much of a reduction of the cosmic variance. The non-trivial suppression, combined with the fact that paired-and-fixed covariances are noisier than from Gaussian simulations, suggests that there is no path towards obtaining accurate covariance matrices from paired-and-fixed simulations – result, that is theoretically expected and accepted in the field. Because the covariances are crucial for the observational estimates of galaxy clustering statistics and cosmological parameters, paired-and-fixed simulations, though useful for some applications, cannot be used for the production of mock galaxy catalogues.


2011 ◽  
Vol 536 ◽  
pp. A18 ◽  
Author(s):  
◽  
P. A. R. Ade ◽  
N. Aghanim ◽  
M. Arnaud ◽  
M. Ashdown ◽  
...  

2018 ◽  
Vol 614 ◽  
pp. A39 ◽  
Author(s):  
A. S. Maniyar ◽  
M. Béthermin ◽  
G. Lagache

We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB, and the mass of dark matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIB × CMB (cosmic microwave background) lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured formation up to at least z = 4. The obscured and unobscured star formation rate densities are compatible at 1σ at z = 5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from ~0.8 at z = 0 to ~8 at z = 4. At 2 < z < 4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimetre galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(Mh/M⊙) = 12.77−0.125+0.128 for the mass of the typical dark matter halo contributing to the CIB at z = 2. Finally, using a Fisher matrix analysis we also computed how the uncertainties on the cosmological parameters affect the recovered CIB model parameters, and find that the effect is negligible.


2014 ◽  
Vol 10 (S306) ◽  
pp. 144-146
Author(s):  
Paolo Serra ◽  

AbstractWe present new measurements of Cosmic Infrared Background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The interpretation based on the halo model is able to associate star-forming galaxies with dark matter halos and their subhalos, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass, and it allows to simultaneously fit all auto- and cross- power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log(Meff/M⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases.


2021 ◽  
Vol 645 ◽  
pp. A40
Author(s):  
A. Maniyar ◽  
M. Béthermin ◽  
G. Lagache

Modelling the anisotropies in the cosmic infrared background (CIB) on all the scales is a challenging task because the nature of the galaxy evolution is complex and too many parameters are therefore often required to fit the observational data. We present a new halo model for the anisotropies of the CIB using only four parameters. Our model connects the mass accretion on the dark matter haloes to the star formation rate. Despite its relative simplicity, it is able to fit both the Planck and Herschel CIB power spectra and is consistent with the external constraints for the obscured star formation history derived from infrared deep surveys used as priors for the fit. Using this model, we find that the halo mass with the maximum efficiency for converting the accreted baryons into stars is log10Mmax = 12.94-0.02+0.02 M⊙, consistent with other studies. Accounting for the mass loss through stellar evolution, we find for an intermediate-age galaxy that the star formation efficiency defined as M⋆(z)/Mb(z) is equal to 0.19 and 0.21 at redshift 0.1 and 2, respectively, which agrees well with the values obtained by previous studies. A CIB model is used for the first time to simultaneously fit Planck and Herschel CIB power spectra. The high angular resolution of Herschel allows us to reach very small scales, making it possible to constrain the shot noise and the one-halo term separately, which is difficult to do using the Planck data alone. However, we find that large angular scale Planck and Herschel data are not fully compatible with the small-scale Herschel data (for ℓ >  3000). The CIB is expected to be correlated with the thermal Sunyaev-Zel’dovich (tSZ) signal of galaxy clusters. Using this halo model for the CIB and a halo model for the tSZ with a single parameter, we also provide a consistent framework for calculating the CIB × tSZ cross correlation, which requires no additional parameter. To a certain extent, the CIB at high frequencies traces galaxies at low redshifts that reside in the clusters contributing to the tSZ, giving rise to the one-halo term of this correlation, while the two-halo term comes from the overlap in the redshift distribution of the tSZ clusters and CIB galaxies. The CIB × tSZ correlation is thus found to be higher when inferred with a combination of two widely spaced frequency channels (e.g. 143 × 857 GHz). We also find that even at ℓ ∼ 2000, the two-halo term of this correlation is still comparable to the one-halo term and has to be accounted for in the total cross-correlation. The CIB, tSZ, and CIB × tSZ act as foregrounds when the kinematic SZ (kSZ) power spectrum is measured from the cosmic microwave background power spectrum and need to be removed. Because of its simplistic nature and the low number of parameters, the halo model formalism presented here for these foregrounds is quite useful for such an analysis to measure the kSZ power spectrum accurately.


2002 ◽  
Vol 393 (3) ◽  
pp. 749-756 ◽  
Author(s):  
M.-A. Miville-Deschênes ◽  
G. Lagache ◽  
J.-L. Puget

2019 ◽  
Vol 490 (1) ◽  
pp. 784-796 ◽  
Author(s):  
F Ruppin ◽  
F Mayet ◽  
J F Macías-Pérez ◽  
L Perotto

ABSTRACT Cosmological analyses based on surveys of galaxy clusters observed through the Sunyaev–Zel’dovich (SZ) effect strongly rely on the mean pressure profile of the cluster population. A tension is currently observed between the cosmological constraints obtained from the analyses of the CMB primary anisotropies and those from cluster abundance in SZ surveys. This discrepancy may be explained by a wrong estimate of the hydrostatic bias parameter that links the hydrostatic mass to the true mass of galaxy clusters. However, a variation of both the amplitude and the shape of the mean pressure profile could also explain part of this tension. We analyse the effects of a modification of this profile on the constraints of the σ8 and Ωm parameters through the analysis of the SZ power spectrum measured by the Planck collaboration. We choose two mean pressure profiles that are respectively lower and higher than the one obtained from the observation of nearby clusters by Planck. The selection of the parameters of these two profiles is based on the current estimates of the pressure and gas mass fraction profile distributions at low redshift. The cosmological parameters found for these two profiles are significantly different from the ones obtained with the Planck pressure profile. We conclude that an ${\sim }15{{\ \rm per\ cent}}$ decrease of the amplitude of the mean normalized pressure profile would alleviate the tension observed between the constraints of σ8 and Ωm from the CMB and cluster analyses without requiring extreme values of the mass bias parameter.


2020 ◽  
Vol 228 ◽  
pp. 00025
Author(s):  
F. Ruppin ◽  
F. Mayet ◽  
J.F. Macías-Pérez ◽  
L. Perotto

The mean pressure profile of the cluster population is a key element in cosmological analyses based on surveys of galaxy clusters observed through the Sunyaev-Zel’dovich (SZ) effect. A variation of both the shape and the amplitude of this profile could explain part of the discrepancy currently observed between the cosmological constraints obtained from the analyses of the CMB primary anisotropies and those from cluster abundance in SZ surveys for a fixed mass bias parameter. We study the cosmological implications of a modification of the mean pressure profile through the analysis of the SZ power spectrum measured by Planck. We define two mean pressure profiles on either side of the one obtained from the observation of nearby clusters by Planck. The parameters of these profiles are chosen to ensure their compatibility with the distributions of pressure and gas mass fraction profiles observed at low redshift. We find significant differences between the cosmological parameters obtained by using these two profiles to fit the Planck SZ power spectrum and those found in previous analyses. We conclude that a ∼15% decrease of the amplitude of the mean normalized pressure profile is sufficient to alleviate the discrepancy observed between the constraints of σ8 and Ωm from the CMB and cluster analyses.


Author(s):  
Ab Rahman A F ◽  
Md Sahak N. ◽  
Ali A. M.

Objective: Once daily dosing (ODD) aminoglycoside is gaining wide acceptance as an alternative way of dosing. In our setting it is the regimen of choice whenever gentamicin is indicated. The objective of this study was to evaluate the practice of gentamicin ODD in a public hospital in Malaysia. Methods: We conducted a retrospective review of medical records of patients on gentamicin ODD who were admitted to Hospital Melaka during January 2002 until March 2010. All adult patients who were on ODD gentamicin with various level of renal function were included in the study. Patients on gentamicin less than 72 hours and pregnant women were excluded. Results: From 110 patients, 75 (68.2%) were male and 35 (31.8%) were female. Indications for ODD gentamicin included pneumonia, 34 (31.0%) neutropenic sepsis, 27 (24.5%) and sepsis, 11 (10.0%). The mean dose and duration of gentamicin was 3.2 mg/kg/day and 7 days, respectively. Almost all patients were on gentamicin combined with other antibiotics. Clinical cure based on fever resolution was found in 89.1% of patients treated with ODD. Resolution of fever took an average of 48 hours after initiation of therapy. The evaluation for bacteriologic cure could not be performed because of insufficient data on culture and sensitivity. Out of 38 patients with analyzable serum creatinine data, four patients might have developed nephrotoxicity. Conclusion: In our setting, lower dosages of ODD gentamicin when used in combination with other antibiotics seemed to be effective and safe in treating most gram negative infections.


2019 ◽  
Author(s):  
Danilo Carmona ◽  
Pablo Jaque ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Peroxides play a central role in many chemical and biological pro- cesses such as the Fenton reaction. The relevance of these compounds lies in the low stability of the O–O bond which upon dissociation results in radical species able to initiate various chemical or biological processes. In this work, a set of 64 DFT functional-basis set combinations has been validated in terms of their capability to describe bond dissociation energies (BDE) for the O–O bond in a database of 14 ROOH peroxides for which experimental values ofBDE are available. Moreover, the electronic contributions to the BDE were obtained for four of the peroxides and the anion H2O2− at the CBS limit at CCSD(T) level with Dunning’s basis sets up to triple–ζ quality provid- ing a reference value for the hydrogen peroxide anion as a model. Almost all the functionals considered here yielded mean absolute deviations around 5.0 kcal mol−1. The smallest values were observed for the ωB97 family and the Minnesota M11 functional with a marked basis set dependence. Despite the mean deviation, order relations among BDE experimental values of peroxides were also considered. The ωB97 family was able to reproduce the relations correctly whereas other functionals presented a marked dependence on the chemical nature of the R group. Interestingly, M11 functional did not show a very good agreement with the established order despite its good performance in the mean error. The obtained results support the use of similar validation strategies for proper prediction of BDE or other molecular properties by DF Tmethods in subsequent related studies.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document