scholarly journals The overarching framework of core-collapse supernova explosions as revealed by 3D fornax simulations

2019 ◽  
Vol 491 (2) ◽  
pp. 2715-2735 ◽  
Author(s):  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan ◽  
Hiroki Nagakura ◽  
M Aaron Skinner ◽  
...  

ABSTRACT We have conducted 19 state-of-the-art 3D core-collapse supernova simulations spanning a broad range of progenitor masses. This is the largest collection of sophisticated 3D supernova simulations ever performed. We have found that while the majority of these models explode, not all do, and that even models in the middle of the available progenitor mass range may be less explodable. This does not mean that those models for which we did not witness explosion would not explode in Nature, but that they are less prone to explosion than others. One consequence is that the ‘compactness’ measure is not a metric for explodability. We find that lower-mass massive star progenitors likely experience lower-energy explosions, while the higher-mass massive stars likely experience higher-energy explosions. Moreover, most 3D explosions have a dominant dipole morphology, have a pinched, wasp-waist structure, and experience simultaneous accretion and explosion. We reproduce the general range of residual neutron-star masses inferred for the galactic neutron-star population. The most massive progenitor models, however, in particular vis à vis explosion energy, need to be continued for longer physical times to asymptote to their final states. We find that while the majority of the inner ejecta have Ye = 0.5, there is a substantial proton-rich tail. This result has important implications for the nucleosynthetic yields as a function of progenitor. Finally, we find that the non-exploding models eventually evolve into compact inner configurations that experience a quasi-periodic spiral SASI mode. We otherwise see little evidence of the SASI in the exploding models.

2013 ◽  
Vol 9 (S296) ◽  
pp. 27-36
Author(s):  
Ken'ichi Nomoto

AbstractAfter the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.


2021 ◽  
Vol 508 (1) ◽  
pp. 828-841
Author(s):  
Chris Nagele ◽  
Hideyuki Umeda ◽  
Koh Takahashi ◽  
Takashi Yoshida ◽  
Kohsuke Sumiyoshi

ABSTRACT We calculate the neutrino signal from Population III supermassive star (SMS) collapse using a neutrino transfer code originally developed for core-collapse supernovae and massive star collapse. Using this code, we are able to investigate the SMS mass range thought to undergo neutrino trapping (∼104 M⊙), a mass range which has been neglected by previous works because of the difficulty of neutrino transfer. For models in this mass range, we observe a neutrino sphere with a large radius and low density compared to typical massive star neutrino spheres. We calculate the neutrino light curve emitted from this neutrino sphere. The resulting neutrino luminosity is significantly lower than the results of a previous analytical model. We briefly discuss the possibility of detecting a neutrino burst from an SMS or the neutrino background from many SMSs and conclude that the former is unlikely with current technology, unless the SMS collapse is located as close as 1 Mpc, while the latter is also unlikely even under very generous assumptions. However, the SMS neutrino background is still of interest as it may serve as a source of noise in proposed dark matter direct detection experiments.


2011 ◽  
Vol 7 (S279) ◽  
pp. 134-137
Author(s):  
Thierry Foglizzo ◽  
Frédéric Masset ◽  
Jérôme Guilet ◽  
Gilles Durand

AbstractMassive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.


2019 ◽  
Vol 490 (4) ◽  
pp. 4622-4637 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan

ABSTRACT Using our new state-of-the-art core-collapse supernova (CCSN) code Fornax, we explore the dependence upon spatial resolution of the outcome and character of three-dimensional (3D) supernova simulations. For the same 19 M⊙ progenitor star, energy and radial binning, neutrino microphysics, and nuclear equation of state, changing only the number of angular bins in the θ and ϕ directions, we witness that our lowest resolution 3D simulation does not explode. However, when jumping progressively up in resolution by factors of two in each angular direction on our spherical-polar grid, models then explode, and explode slightly more vigorously with increasing resolution. This suggests that there can be a qualitative dependence of the outcome of 3D CCSN simulations upon spatial resolution. The critical aspect of higher spatial resolution is the adequate capturing of the physics of neutrino-driven turbulence, in particular its Reynolds stress. The greater numerical viscosity of lower resolution simulations results in greater drag on the turbulent eddies that embody turbulent stress, and, hence, in a diminution of their vigor. Turbulent stress not only pushes the temporarily stalled shock further out, but bootstraps a concomitant increase in the deposited neutrino power. Both effects together lie at the core of the resolution dependence we observe.


2020 ◽  
Vol 492 (4) ◽  
pp. 5764-5779 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan

ABSTRACT This paper presents the first systematic study of proto-neutron star (PNS) convection in three dimensions (3D) based on our latest numerical fornax models of core-collapse supernova (CCSN). We confirm that PNS convection commonly occurs, and then quantify the basic physical characteristics of the convection. By virtue of the large number of long-term models, the diversity of PNS convective behaviour emerges. We find that the vigour of PNS convection is not correlated with CCSN dynamics at large radii, but rather with the mass of PNS − heavier masses are associated with stronger PNS convection. We find that PNS convection boosts the luminosities of νμ, ντ, $\bar{\nu }_{\mu }$, and $\bar{\nu }_{\tau }$ neutrinos, while the impact on other species is complex due to a competition of factors. Finally, we assess the consequent impact on CCSN dynamics and the potential for PNS convection to generate pulsar magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document