scholarly journals The environment of FRB 121102 and possible relation to SGR/PSR J1745−2900

2020 ◽  
Vol 501 (1) ◽  
pp. L76-L79
Author(s):  
J I Katz

ABSTRACT Variations of the dispersion measures (DM) and rotation measures (RM) of fast radio bursts (FRBs) 121102 indicate magnetic fields ∼3–17 mG in the dispersing plasma. The electron density may be ${\sim}10^4\,$ cm−3. The observed time scales ∼1 yr constrain the size of the plasma cloud. Increasing DM excludes simple models involving an expanding supernova remnant, and the non-zero RM excludes spherical symmetry. The varying DM and RM may be attributable to the motion of plasma into or out of the line of sight to or changing electron density within slower moving plasma. The extraordinarily large RM of FRB 121102 implies an environment, and possibly also a formation process and source, qualitatively different from those of other FRB. The comparable and comparably varying RM of SGR/PSR J1745−2900 suggests it as a FRB candidate. Appendix A discusses the age of FRB 121102 in the context of a ‘Copernican Principle’.

2016 ◽  
Vol 121 (4) ◽  
pp. 2853-2865 ◽  
Author(s):  
Jae‐Ok Lee ◽  
Y.‐J. Moon ◽  
Jin‐Yi Lee ◽  
Kyoung‐Sun Lee ◽  
R.‐S. Kim

2020 ◽  
Vol 890 (2) ◽  
pp. L32 ◽  
Author(s):  
C. Casentini ◽  
F. Verrecchia ◽  
M. Tavani ◽  
A. Ursi ◽  
L. A. Antonelli ◽  
...  

1967 ◽  
Vol 20 (3) ◽  
pp. 297 ◽  
Author(s):  
ER Hill

Radio evidence for two new supernova remnants in the Southern Milky Way is presented. Some new observations of the known supernova remnant, source 1439-62, and of the Rosette nebula, a shell source but not a supernova remnant, are also presented. The problem of finding model shells to fit the radio observations is considered and it is shown that the radio emission from 1439-62 is unlikely to originate in a shell with spherical symmetry.


2021 ◽  
Vol 922 (2) ◽  
pp. L31
Author(s):  
Siyao Xu ◽  
David H. Weinberg ◽  
Bing Zhang

Abstract Extragalactic fast radio bursts (FRBs) have large dispersion measures (DMs) and are unique probes of intergalactic electron density fluctuations. By using the recently released First CHIME/FRB Catalog, we reexamined the structure function (SF) of DM fluctuations. It shows a large DM fluctuation similar to that previously reported in Xu & Zhang, but no clear correlation hinting toward large-scale turbulence is reproduced with this larger sample. To suppress the distortion effect from FRB distances and their host DMs, we focus on a subset of CHIME catalog with DM < 500 pc cm−3. A trend of nonconstant SF and nonzero correlation function (CF) at angular separations θ less than 10° is seen, but with large statistical uncertainties. The difference found between SF and that derived from CF at θ ≲ 10° can be ascribed to the large statistical uncertainties or the density inhomogeneities on scales on the order of 100 Mpc. The possible correlation of electron density fluctuations and inhomogeneities of density distribution should be tested when several thousands of FRBs are available.


2001 ◽  
Vol 182 ◽  
pp. 11-16
Author(s):  
James Cordes

AbstractI first review the observables and optics of interstellar seeing associated with radio wave scattering in the interstellar medium. I then describe the Galactic distribution of electron density and its fluctuations, as inferred from a number of observables, including angular and pulse broadening, diffractive scintillations, and dispersion measures. Propects for improving the Galactic model are outlined.


2020 ◽  
Vol 495 (3) ◽  
pp. 2909-2920 ◽  
Author(s):  
Adam M Ritchey

ABSTRACT We present an analysis of moderately high-resolution optical spectra obtained for the sightline to CD−23 13777, an O9 supergiant that probes high-velocity interstellar gas associated with the supernova remnant W28. Absorption components at both high positive and high negative velocity are seen in the interstellar Na i D and Ca ii H and K lines towards CD−23 13777. The high-velocity components exhibit low Na i/Ca ii ratios, suggesting efficient grain destruction by shock sputtering. High column densities of CH+, and high CH+/CH ratios, for the components seen at lower velocity may be indicative of enhanced turbulence in the clouds interacting with W28. The highest positive and negative velocities of the components seen in Na i and Ca ii absorption towards CD−23 13777 imply that the velocity of the blast wave associated with W28 is at least 150 km s−1, a value that is significantly higher than most previous estimates. The line of sight to CD−23 13777 passes very close to a well-known site of interaction between the supernova remnant and a molecular cloud to the north-east. The north-east molecular cloud exhibits broad molecular line emission, OH maser emission from numerous locations, and bright extended GeV and TeV γ-ray emission. The sightline to CD−23 13777 is thus a unique and valuable probe of the interaction between W28 and dense molecular gas in its environs. Future observations at ultraviolet and visible wavelengths will help to better constrain the abundances, kinematics, and physical conditions in the shocked and quiescent gas along this line of sight.


2012 ◽  
Vol 8 (S291) ◽  
pp. 211-216 ◽  
Author(s):  
J. M. Cordes

AbstractThis paper summarizes how multi-wavelength measurements will be aggregated to determine Galactic structure in the interstellar medium (ISM) and produce the next-generation electron density model. Fluctuations in density and magnetic field from parsec scales down to about 1000 km cause a number of propagation effects in both radio waves and cosmic rays. Density microstructure appears to include Kolmogorov-like turbulence. The next generation electron-density model, NE2012, will include about double the number of lines of sight with dispersion and scattering measurements and it will be anchored with a much larger number of pulsar parallax distances. The foreground Galactic model is crucial for inferring similar ionized structures in the intergalactic medium (IGM) from scattering measurements on high-z objects. Intergalactic scattering is discussed with reference to distant sources of radio bursts. In particular, the cosmological radio scattering horizon is defined along with its analog for the ISM.


2011 ◽  
Vol 29 (6) ◽  
pp. 1019-1028 ◽  
Author(s):  
M. Kramar ◽  
J. Davila ◽  
H. Xie ◽  
S. Antiochos

Abstract. In order to analize the influence of a Coronal Mass Ejection (CME) on the coronal streamer belt, we made 3-D reconstructions of the electron density in the corona at heliospheric distances from 1.5 to 4 R&amp;odot; for periods before and after a CME occured. The reconstructions were performed using a tomography technique. We studied two CME cases: (i) a slow CME on 1 June 2008; (ii) two fast CMEs on 31 December 2007 and 2 January 2008. For the first case of slow CME, it was found: (i) the potential magnetic field configuration in the CME initiation region before the CME does not agree with the coronal density structure while after the CME the agreement between the field and density is much better. This could be manifistation of that that the field was non-potential before the CME and after the CME the field relaxes towards a more potential state. (ii) It was shown that the dimming caused by the slow CME is not due to rotation of the corona and a line-of-sight (LOS) effect but a streamer blow out effect took place.


Sign in / Sign up

Export Citation Format

Share Document