scholarly journals Antiquity and Evolution of the MADS-Box Gene Family Controlling Flower Development in Plants

2003 ◽  
Vol 20 (9) ◽  
pp. 1435-1447 ◽  
Author(s):  
J. Nam
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhongyuan Lin ◽  
Dingding Cao ◽  
Rebecca Njeri Damaris ◽  
Pingfang Yang

Abstract Background Sacred lotus (Nelumbo nucifera) is a vital perennial aquatic ornamental plant. Its flower shape determines the horticultural and ornamental values. However, the mechanisms underlying lotus flower development are still elusive. MADS-box transcription factors are crucial in various features of plant development, especially in floral organogenesis and specification. It is still unknown how the MADS-box transcription factors regulate the floral organogenesis in lotus. Results To obtain a comprehensive insight into the functions of MADS-box genes in sacred lotus flower development, we systematically characterized members of this gene family based on the available genome information. A total of 44 MADS-box genes were identified, of which 16 type I and 28 type II genes were categorized based on the phylogenetic analysis. Furthermore, the structure of MADS-box genes and their expressional patterns were also systematically analyzed. Additionally, subcellular localization analysis showed that they are mainly localized in the nucleus, of which a SEPALLATA3 (SEP3) homolog NnMADS14 was proven to be involved in the floral organogenesis. Conclusion These results provide some fundamental information about the MADS-box gene family and their functions, which might be helpful in not only understanding the mechanisms of floral organogenesis but also breeding of high ornamental value cultivars in lotus.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Liman Zhang ◽  
Jin Zhao ◽  
Chunfang Feng ◽  
Mengjun Liu ◽  
Jiurui Wang ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiao-Guang Sheng ◽  
Zhen-Qing Zhao ◽  
Jian-Sheng Wang ◽  
Hui-Fang Yu ◽  
Yu-Sen Shen ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


2015 ◽  
Vol 43 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Xiaohui WANG ◽  
Junhuan CHENG ◽  
Feng XU ◽  
Xingxiang LI ◽  
Weiwei ZHANG ◽  
...  

As a kind of transcription factors gene family, MADS-box genes play an important role in plant development processes. To find genes involved in the floral transition of Ginkgo biloba, a MADS-box gene, designated as GbMADS2, was cloned from G. biloba based on EST sequences by RT-PCR. Sequence analysis results showed that the cDNA sequence of GbMADS2 contained a 663 bp length ORF encoding 221 amino acids protein, which displayed typical structure of plant MADS-box protein including MADS, I, and K domains and C terminus. The sequence of GbMADS2 protein was highly homologous to those of MADS-box proteins from other plant species with the highest homologous to AGAMOUS (CyAG) from Cycas revoluta. The phylogenetic tree analysis revealed that GbMADS2 belonged to AGAMOUS clade genes. Real-time PCR analysis indicated that expression levels of GbMADS2 gene in female and male flower were significantly higher than those in root, stem, and leaves, and that GbMADS2 expression level increased along with time of flower development. The spatial and time-course expression profile of GbMADS2 implied that GbMADS2 might be involved in development of reproductive organs. The isolation and expression analysis of GbMADS2 provided basis for further studying the molecular mechanism of flower development in G. biloba.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200762 ◽  
Author(s):  
Yunwen Wu ◽  
Yunzhuo Ke ◽  
Jing Wen ◽  
Pengcheng Guo ◽  
Feng Ran ◽  
...  

2013 ◽  
Vol 40 (6) ◽  
pp. 3901-3911 ◽  
Author(s):  
Yongjun Shu ◽  
Diansi Yu ◽  
Dan Wang ◽  
Donglin Guo ◽  
Changhong Guo

2000 ◽  
Vol 12 (6) ◽  
pp. 871 ◽  
Author(s):  
Jong-Seong Jeon ◽  
Seonghoe Jang ◽  
Sichul Lee ◽  
Jongmin Nam ◽  
Chanhong Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document