scholarly journals Whole-Genome Sequencing of Tibetan Macaque (Macaca thibetana) Provides New Insight into the Macaque Evolutionary History

2014 ◽  
Vol 31 (6) ◽  
pp. 1475-1489 ◽  
Author(s):  
Zhenxin Fan ◽  
Guang Zhao ◽  
Peng Li ◽  
Naoki Osada ◽  
Jinchuan Xing ◽  
...  
PLoS Genetics ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. e1006675 ◽  
Author(s):  
Hao Hu ◽  
Nayia Petousi ◽  
Gustavo Glusman ◽  
Yao Yu ◽  
Ryan Bohlender ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rungnapa Sakulworakan ◽  
Putita Chokmangmeepisarn ◽  
Nguyen Dinh-Hung ◽  
Elayaraja Sivaramasamy ◽  
Ikuo Hirono ◽  
...  

Aeromonas veronii outbreaks in tilapia farming caused relatively high mortalities, and the bacteria was resistant to many kinds of antimicrobials used in Thailand aquaculture. According to the CLSI standard, the determination of antimicrobials efficacy has been limited to phenotypic analyses, and a genomics study is required. This research aimed to analyze the resistome of A. veronii isolated from diseased tilapia in Chainat, Nong Khai, and Uttaradit provinces in Thailand. A total of 12 isolates of A. veronii were identified based on the gyrB sequencing and then, the MIC values to eight antimicrobials (AMP, AML, GEN, ENR, OXO, OTC, SXT, and FFC) were determined. According to the MIC patterns, whole genome sequencing (WGS) of five representatives and resistome analysis were performed, including 15 genomes of A. veronii isolated from freshwater fish available in the NCBI. All tilapia isolates were susceptible to FFC but resistant to AML and AMP while OTC resistance was the most dominant. In addition to the WGS analysis, 4.5 Mbp of A. veronii was characterized. A total of 20 ARGs were detected by resistome analysis and 16 genes were shared among the A. veronii population. In conclusion, A. veronii strains isolated from tilapia exhibited a resistance to several antimicrobials and multidrug resistance (MDR) which was related to the presence of multiple ARGs. Aeromonas veronii shared the ARGs in their population worldwide with a possibility of a plasmid-mediated acquisition due to the presence of resistance islands.


2017 ◽  
Author(s):  
Stephan J. Sanders ◽  
Benjamin M. Neale ◽  
Hailiang Huang ◽  
Donna M. Werling ◽  
Joon-Yong An ◽  
...  

AbstractAs technology advances, whole genome sequencing (WGS) is likely to supersede other genotyping technologies. The rate of this change depends on its relative cost and utility. Variants identified uniquely through WGS may reveal novel biological pathways underlying complex disorders and provide high-resolution insight into when, where, and in which cell type these pathways are affected. Alternatively, cheaper and less computationally intensive approaches may yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating genome, through pilot WGS projects, will be critical to determine which of these two extremes best represents reality. With large cohorts, well-defined risk loci, and a compelling need to understand the underlying biology, psychiatric disorders have a role to play in this preliminary WGS assessment. The WGSPD consortium will integrate data for 18,000 individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, and major depressive disorder, along with over 150,000 controls.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Shaoli Li ◽  
Fei Liu ◽  
Hongmei Sun ◽  
Baoli Zhu ◽  
Na Lv ◽  
...  

Macrolide-resistant Mycoplasma pneumoniae plays an important role in refractory M. pneumoniae pneumonia. Here, we present the whole-genome sequencing of the macrolide-resistant M. pneumoniae strain S355. The annotated full-genome sequence might provide a new insight into drug resistance in M. pneumoniae and can help pediatricians recognize the disease earlier.


Sign in / Sign up

Export Citation Format

Share Document