scholarly journals Whole-Genome Sequencing of Macrolide-Resistant Mycoplasma pneumoniae Strain S355, Isolated in China

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Shaoli Li ◽  
Fei Liu ◽  
Hongmei Sun ◽  
Baoli Zhu ◽  
Na Lv ◽  
...  

Macrolide-resistant Mycoplasma pneumoniae plays an important role in refractory M. pneumoniae pneumonia. Here, we present the whole-genome sequencing of the macrolide-resistant M. pneumoniae strain S355. The annotated full-genome sequence might provide a new insight into drug resistance in M. pneumoniae and can help pediatricians recognize the disease earlier.

2017 ◽  
Vol 55 (6) ◽  
pp. 1871-1882 ◽  
Author(s):  
Joseph Shea ◽  
Tanya A. Halse ◽  
Pascal Lapierre ◽  
Matthew Shudt ◽  
Donna Kohlerschmidt ◽  
...  

ABSTRACTWhole-genome sequencing (WGS) is a newer alternative for tuberculosis (TB) diagnostics and is capable of providing rapid drug resistance profiles while performing species identification and capturing the data necessary for genotyping. Our laboratory developed and validated a comprehensive and sensitive WGS assay to characterizeMycobacterium tuberculosisand otherM. tuberculosiscomplex (MTBC) strains, composed of a novel DNA extraction, optimized library preparation, paired-end WGS, and an in-house-developed bioinformatics pipeline. This new assay was assessed using 608 MTBC isolates, with 146 isolates during the validation portion of this study and 462 samples received prospectively. In February 2016, this assay was implemented to test all clinical cases of MTBC in New York State, including isolates and early positive Bactec mycobacterial growth indicator tube (MGIT) 960 cultures from primary specimens. Since the inception of the assay, we have assessed the accuracy of identification of MTBC strains to the species level, concordance with culture-based drug susceptibility testing (DST), and turnaround time. Species identification by WGS was determined to be 99% accurate. Concordance between drug resistance profiles generated by WGS and culture-based DST methods was 96% for eight drugs, with an average resistance-predictive value of 93% and susceptible-predictive value of 96%. This single comprehensive WGS assay has replaced seven molecular assays and has resulted in resistance profiles being reported to physicians an average of 9 days sooner than with culture-based DST for first-line drugs and 32 days sooner for second-line drugs.


2020 ◽  
Author(s):  
Mei Liu ◽  
Peng Xu ◽  
Xingwei Liao ◽  
Qing Li ◽  
Wei Chen ◽  
...  

Abstract BACKGROUND Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB), remains a severe public health problem globally. Guizhou has the fourth highest TB report rate of pulmonary TB around China. Uncovering the current status of TB epidemic, and distinguishing disease caused by recent or remote infections are the key issue to formulate effective prevention and control strategy. However, these data are limited in Guizhou. In this study, we aimed to investigate the transmission and drug-resistance profiles of TB in Luodian, a highest TB incidence and resources limited area in Guizhou, China. METHODS During 22 May 2018 to 21 April 2019, individuals with positive MTB culture were enrolled, all of them accepted the standardized interview. MTB isolates were performed whole genome sequencing. The prevalence of MTB genotypes, the genomic cluster rate and drug-resistance conferring mutations were analyzed based on the sequencing data. RESULTS A total of 107 cases were enrolled, of which 64.5% were male, and the median age of the patients was 51 years old (interquartile range, 40–65 years old). 84% patient were new case while 16% were retreated cases. All cases excepted three came from nine towns, and 55.1% of cases were from Longping and Bianyang. The phylogeny tree showed that 53.3% of strains were Lineage 2 (Beijing genotype), while 46.7% were Lineage 4 (Euro-American genotype). Among Lineage 2 strains, 66.7% were modern Beijing. Seven clusters with genomic distance within 12 SNVs were identified. The clusters included 14 strains, accounting for a cluster rate of 13.1%. The distance of clustered cases was between 2.1 to 71 kilometers (Km), with a media distance of 14 Km (interquartile range, 2.8–38 Km). Cases of two clusters came from the same town. Based on the gene mutations associated to drug-resistance, we predicted that 4.8% was resistant to isoniazid, 3.7% to rifampicin, 3.7% to streptomycin, and only one strain (0.9%) was multidrug resistance (MDR). CONLUSIONS: The study found high transmission and low drug-resistance rate in Luodian, and sublineages of modern Beijing branch had recent expansion in Luodian. this work also may serve as a genomic baseline to study the evolution and spread of MTB in Guizhou.


2017 ◽  
Vol 5 (49) ◽  
Author(s):  
Taylor W. Bailey ◽  
Naila C. do Nascimento ◽  
Arun K. Bhunia

ABSTRACT Listeria monocytogenes is an opportunistic invasive foodborne pathogen. Here, we performed whole-genome sequencing of L. monocytogenes strain F4244 (serotype 4b) using Illumina sequencing. The sequence showed 94.5% identity with strain F2365, serotype 4b, and 90.6% with EGD-e, serotype 1/2a.


2020 ◽  
Vol 9 (42) ◽  
Author(s):  
Shyam Sunder Rangu ◽  
Ashish Beck ◽  
Mohak Sharda ◽  
Rita Mukhopadhyaya ◽  
Aswin Sai Narain Seshasayee ◽  
...  

ABSTRACT Sphingobium sp. strain RSMS was described earlier as an efficient degrader of tributyl phosphate, an organic pollutant. This report describes the generation and annotation of the genome sequence of Sphingobium sp. strain RSMS, which will facilitate future studies to identify genetic elements responsible for the degradation of tributyl phosphate.


mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yuan Wu ◽  
Chen Liu ◽  
Wen-Ge Li ◽  
Jun-Li Xu ◽  
Wen-Zhu Zhang ◽  
...  

ABSTRACTHorizontal gene transfer of mobile genetic elements (MGEs) accounts for the mosaic genome ofClostridium difficile, leading to acquisition of new phenotypes, including drug resistance and reconstruction of the genomes. MGEs were analyzed according to the whole-genome sequences of 37C. difficileisolates with a variety of sequence types (STs) within clade 4 from China. Great diversity was found in each transposon even within isolates with the same ST. Two novel transposons were identified in isolates ZR9 and ZR18, of which approximately one third to half of the genes showed heterogenous origins compared with the usual intestinal bacterial genes. Most importantly,catD, known to be harbored by Tn4453a/b, was replaced byaac(6′) aph(2′′)in isolates 2, 7, and 28. This phenomenon illustrated the frequent occurrence of gene exchanges betweenC. difficileand other enterobacteria with individual heterogeneity. Numerous prophages and CRISPR arrays were identified inC. difficileisolates of clade 4. Approximately 20% of spacers were located in prophage-carried CRISPR arrays, providing a new method for typing and tracing the origins of closely related isolates, as well as in-depth studies of the mechanism underlying genome remodeling. The rates of drug resistance were obviously higher than those reported previously around the world, although all isolates retained high sensitivity to vancomycin and metronidazole. The increasing number ofC. difficileisolates resistant to all antibiotics tested here suggests the ease with which resistance is acquiredin vivo. This study gives insights into the genetic mechanism of microevolution within clade 4.IMPORTANCEMobile genetic elements play a key role in the continuing evolution ofClostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4C. difficileisolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/bwithaac(6′) aph(2′′)instead ofcatD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Sebastian M. Gygli ◽  
Peter M. Keller ◽  
Marie Ballif ◽  
Nicolas Blöchliger ◽  
Rico Hömke ◽  
...  

ABSTRACTWhole-genome sequencing allows rapid detection of drug-resistantMycobacterium tuberculosisisolates. However, the availability of high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been limited. We determined drug resistance profiles of 176 genetically diverse clinicalM. tuberculosisisolates from the Democratic Republic of the Congo, Ivory Coast, Peru, Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared DST results with predicted drug resistance profiles inferred by whole-genome sequencing. Classification of strains by the two phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to 99% of cases, depending on the drug. Our data suggest that the established critical concentration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and misclassifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory concentrations were explained by mutations identified by whole-genome sequencing. Using whole-genome sequences, we were able to predict quantitative drug resistance levels for the majority of drug resistance mutations. Predicting quantitative levels of drug resistance by whole-genome sequencing was partially limited due to incompletely understood drug resistance mechanisms. The overall sensitivity and specificity of whole-genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-genome sequencing has the potential to infer resistance profiles without the need for time-consuming phenotypic methods.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Keira A. Cohen ◽  
Abigail L. Manson ◽  
Christopher A. Desjardins ◽  
Thomas Abeel ◽  
Ashlee M. Earl

Sign in / Sign up

Export Citation Format

Share Document