scholarly journals Whole Genome Sequencing of Fusarium fujikuroi Provides Insight into the Role of Secretory Proteins and Cell Wall Degrading Enzymes in Causing Bakanae Disease of Rice

2017 ◽  
Vol 8 ◽  
Author(s):  
Bishnu M. Bashyal ◽  
Kirti Rawat ◽  
Sapna Sharma ◽  
Deepika Kulshreshtha ◽  
S. Gopala Krishnan ◽  
...  
2017 ◽  
Author(s):  
Stephan J. Sanders ◽  
Benjamin M. Neale ◽  
Hailiang Huang ◽  
Donna M. Werling ◽  
Joon-Yong An ◽  
...  

AbstractAs technology advances, whole genome sequencing (WGS) is likely to supersede other genotyping technologies. The rate of this change depends on its relative cost and utility. Variants identified uniquely through WGS may reveal novel biological pathways underlying complex disorders and provide high-resolution insight into when, where, and in which cell type these pathways are affected. Alternatively, cheaper and less computationally intensive approaches may yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating genome, through pilot WGS projects, will be critical to determine which of these two extremes best represents reality. With large cohorts, well-defined risk loci, and a compelling need to understand the underlying biology, psychiatric disorders have a role to play in this preliminary WGS assessment. The WGSPD consortium will integrate data for 18,000 individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, and major depressive disorder, along with over 150,000 controls.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 331
Author(s):  
Montserrat Palau ◽  
Núria Piqué ◽  
M. José Ramírez-Lázaro ◽  
Sergio Lario ◽  
Xavier Calvet ◽  
...  

Helicobacter pylori is a common pathogen associated with several severe digestive diseases. Although multiple virulence factors have been described, it is still unclear the role of virulence factors on H. pylori pathogenesis and disease progression. Whole genome sequencing could help to find genetic markers of virulence strains. In this work, we analyzed three complete genomes from isolates obtained at the same point in time from a stomach of a patient with adenocarcinoma, using multiple available bioinformatics tools. The genome analysis of the strains B508A-S1, B508A-T2A and B508A-T4 revealed that they were cagA, babA and sabB/hopO negative. The differences among the three genomes were mainly related to outer membrane proteins, methylases, restriction modification systems and flagellar biosynthesis proteins. The strain B508A-T2A was the only one presenting the genotype vacA s1, and had the most distinct genome as it exhibited fewer shared genes, higher number of unique genes, and more polymorphisms were found in this genome. With all the accumulated information, no significant differences were found among the isolates regarding virulence and origin of the isolates. Nevertheless, some B508A-T2A genome characteristics could be linked to the pathogenicity of H. pylori.


2019 ◽  
Vol 28 (9) ◽  
pp. 2192-2205 ◽  
Author(s):  
Liliana C. M. Salvador ◽  
Daniel J. O'Brien ◽  
Melinda K. Cosgrove ◽  
Tod P. Stuber ◽  
Angie M. Schooley ◽  
...  

2020 ◽  
Vol 35 (4) ◽  
pp. 977-985 ◽  
Author(s):  
Peng Yuan ◽  
Cen Yang ◽  
Yixin Ren ◽  
Jie Yan ◽  
Yanli Nie ◽  
...  

Abstract STUDY QUESTION Is a novel homozygous phospholipase C zeta (PLCζ), c.1658 G>C; p. R553P mutation in the C2 domain associated with the outcomes of recurrent fertilization failure after ICSI? SUMMARY ANSWER PLCζ, c.1658 G>C led to defective human oocyte activation and fertilization failure, while this mutation in the C2 domain of PLCζ did not compromise concentration, motility and chromosome ploidy of sperm. WHAT IS KNOWN ALREADY Sperm-specific PLCζ is now widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations, which are essential for egg activation during mammalian fertilization. Thus far, few genetic studies have shown that different point mutations in the PLCζ gene are associated with male infertility. STUDY DESIGN, SIZE, DURATION This was a basic medical research to assess pathogenicity for novel mutation in the C2 domain of PLCζ during human fertilization. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell omics were applied to analyze the DNA methylation state of the fertilization failure oocytes and the ploidy of the patient’s sperm. Whole genome sequencing data for the patient were analyzed for mutations in PLCζ. Sanger sequencing confirmed the presence of a rare variant, and then the mutant and wild-type PLCζ mRNA were injected to observe oocyte activation. MAIN RESULTS AND THE ROLE OF CHANCE The fertilization failure oocytes (n = 4) were triploid and lacking proper DNA demethylation. The whole genome sequencing analysis revealed a novel missense homozygous mutation in PLCζ, c.1658 G>C; p. R553P, which leads to the conversion of arginine 553 to proline. This point mutation does not affect the production of the corresponding protein in sperm. However, microinjection of the mRNA transcribed from the PLCζ R553P mutation gene failed to trigger oocyte activation and the subsequent embryo development. LIMITATIONS, REASONS FOR CAUTION Only one patient with PLCζ mutations was available because of its rare incidence. WIDER IMPLICATIONS OF THE FINDINGS Notably, we discovered a novel homozygous mutation in PLCζ, which results in an abnormal conformation at the C2 domain of the PLCζ protein. Our findings indicate an essential role of PLCζ in human fertilization and the requirement of a normal structure of C2 domain in PLCζ-mediated physiological function. STUDY FUNDING/COMPETING INTEREST(S) This project is funded by the National Natural Science Foundation of China (31571544, 31871482, 31871447) and National Key Research and Development Program (2018YFC1004000, 2017YFA0103801). All authors declared no competing interests. TRIAL REGISTRATION NUMBER Not applicable.


2014 ◽  
Vol 31 (6) ◽  
pp. 1475-1489 ◽  
Author(s):  
Zhenxin Fan ◽  
Guang Zhao ◽  
Peng Li ◽  
Naoki Osada ◽  
Jinchuan Xing ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2021 ◽  
Vol 5 (12) ◽  
pp. 2563-2568
Author(s):  
Chunyan Sun ◽  
Jian Xu ◽  
Bo Zhang ◽  
Haifan Huang ◽  
Lei Chen ◽  
...  

TEMPI syndrome (telangiectasias, elevated erythropoietin level and erythrocytosis, monoclonal gammopathy, perinephric fluid collections, and intrapulmonary shunting) is a newly defined multisystemic disease with its pathophysiology largely unknown. Here, we report the whole-genome sequencing (WGS) analysis on the tumor-normal paired cells from a patient with TEMPI syndrome. WGS revealed somatic nonsynonymous single-nucleotide variants, including SLC7A8, NRP2, and AQP7. Complex structural variants of chromosome 2 were found, particularly within regions where some putative oncogenes reside. Of potential clinical relevance, duplication of 22q11.23 was identified, and the expression of the located gene macrophage migration inhibitory factor (MIF) was significantly upregulated in 3 patients with TEMPI syndrome. Importantly, the level of serum MIF in one patient with TEMPI syndrome was significantly decreased in accordance with the downtrend of plasma cells, M-protein, hemoglobin, and erythropoietin and the improvement of telangiectasias, perinephric fluid collections, and intrapulmonary shunting after treatment with plasma cell–directed therapy. In conclusion, our study provides insights into the genomic landscape and suggests a role of MIF in the pathophysiology of TEMPI syndrome.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
E. A. Hisey ◽  
H. Hermans ◽  
Z. T. Lounsberry ◽  
F. Avila ◽  
R. A. Grahn ◽  
...  

Abstract Background Distichiasis, an ocular disorder in which aberrant cilia (eyelashes) grow from the opening of the Meibomian glands of the eyelid, has been reported in Friesian horses. These misplaced cilia can cause discomfort, chronic keratitis, and corneal ulceration, potentially impacting vision due to corneal fibrosis, or, if secondary infection occurs, may lead to loss of the eye. Friesian horses represent the vast majority of reported cases of equine distichiasis, and as the breed is known to be affected with inherited monogenic disorders, this condition was hypothesized to be a simply inherited Mendelian trait. Results A genome wide association study (GWAS) was performed using the Axiom 670 k Equine Genotyping array (MNEc670k) utilizing 14 cases and 38 controls phenotyped for distichiasis. An additive single locus mixed linear model (EMMAX) approach identified a 1.83 Mb locus on ECA5 and a 1.34 Mb locus on ECA13 that reached genome-wide significance (pcorrected = 0.016 and 0.032, respectively). Only the locus on ECA13 withstood replication testing (p = 1.6 × 10− 5, cases: n = 5 and controls: n = 37). A 371 kb run of homozygosity (ROH) on ECA13 was found in 13 of the 14 cases, providing evidence for a recessive mode of inheritance. Haplotype analysis (hapQTL) narrowed the region of association on ECA13 to 163 kb. Whole-genome sequencing data from 3 cases and 2 controls identified a 16 kb deletion within the ECA13 associated haplotype (ECA13:g.178714_195130del). Functional annotation data supports a tissue-specific regulatory role of this locus. This deletion was associated with distichiasis, as 18 of the 19 cases were homozygous (p = 4.8 × 10− 13). Genotyping the deletion in 955 horses from 54 different breeds identified the deletion in only 11 non-Friesians, all of which were carriers, suggesting that this could be causal for this Friesian disorder. Conclusions This study identified a 16 kb deletion on ECA13 in an intergenic region that was associated with distichiasis in Friesian horses. Further functional analysis in relevant tissues from cases and controls will help to clarify the precise role of this deletion in normal and abnormal eyelash development and investigate the hypothesis of incomplete penetrance.


Sign in / Sign up

Export Citation Format

Share Document