scholarly journals Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs

2016 ◽  
Vol 33 (12) ◽  
pp. 3183-3193 ◽  
Author(s):  
Kazuaki Okawa ◽  
Misa Ohno ◽  
Akinori Kashimura ◽  
Masahiro Kimura ◽  
Yuki Kobayashi ◽  
...  
2005 ◽  
Vol 53 (10) ◽  
pp. 1283-1292 ◽  
Author(s):  
Rolf G. Boot ◽  
Anton P. Bussink ◽  
Marri Verhoek ◽  
Piet A.J. de Boer ◽  
Antoon F.M. Moorman ◽  
...  

Two distinct chitinases have been identified in mammals: a phagocyte-specific enzyme named chitotriosidase and an acidic mammalian chitinase (AMCase) expressed in the lungs and gastrointestinal tract. Increased expression of both chitinases has been observed in different pathological conditions: chitotriosidase in lysosomal lipid storage disorders like Gaucher disease and AMCase in asthmatic lung disease. Recently, it was reported that AMCase activity is involved in the pathogenesis of asthma in an induced mouse model. Inhibition of chitinase activity was found to alleviate the inflammation-driven pathology. We studied the tissue-specific expression of both chitinases in mice and compared it to the situation in man. In both species AMCase is expressed in alveolar macrophages and in the gastrointestinal tract. In mice, chitotriosidase is expressed only in the gastrointestinal tract, the tongue, fore-stomach, and Paneth cells in the small intestine, whereas in man the enzyme is expressed exclusively by professional phagocytes. This species difference seems to be mediated by distinct promoter usage. In conclusion, the pattern of expression of chitinases in the lung differs between mouse and man. The implications for the development of anti-asthma drugs with chitinases as targets are discussed.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Jeannine M. Refos ◽  
Alieke G. Vonk ◽  
Marian T. ten Kate ◽  
Henri A. Verbrugh ◽  
Irma A. J. M. Bakker-Woudenberg ◽  
...  

ABSTRACT Host chitinases, chitotriosidase and acidic mammalian chitinase (AMCase), improved the antifungal activity of caspofungin (CAS) against Aspergillus fumigatus in vitro. These chitinases are not constitutively expressed in the lung. Here, we investigated whether chitosan derivatives were able to induce chitinase activity in the lungs of neutropenic rats and, if so, whether these chitinases were able to prolong survival of rats with invasive pulmonary aspergillosis (IPA) or of rats with IPA and treated with CAS. An oligosaccharide-lactate chitosan (OLC) derivative was instilled in the left lung of neutropenic rats to induce chitotriosidase and AMCase activities. Rats instilled with OLC or with phosphate-buffered saline (PBS) were subsequently infected with A. fumigatus and then treated with suboptimal doses of CAS. Survival, histopathology, and galactomannan indexes were determined. Instillation of OLC resulted in chitotriosidase and AMCase activities. However, instillation of OLC did not prolong rat survival when rats were subsequently challenged with A. fumigatus. In 5 of 7 rats instilled with OLC, the fungal foci in the lungs were smaller than those in rats instilled with PBS. Instillation of OLC did not significantly enhance the survival of neutropenic rats challenged with A. fumigatus and treated with a suboptimal dosage of CAS. Chitotriosidase and AMCase activities can be induced with OLC, but the presence of active chitinases in the lung did not prevent the development of IPA or significantly enhance the therapeutic outcome of CAS treatment.


2019 ◽  
Author(s):  
Benjamin A. Barad ◽  
Lin Liu ◽  
Roberto Efrain Diaz ◽  
Ralp Basilio ◽  
Steven J. Van Dyken ◽  
...  

AbstractChitin is an abundant polysaccharide used by a large range of organisms for structural rigidity and water repulsion. As such, the insoluble crystalline structure of chitin poses significant challenges for enzymatic degradation. Vertebrates do not produce chitin, but do express chitin degrading enzymes. Acidic mammalian chitinase, the primary enzyme involved in the degradation of environmental chitin in mammalian lungs, is a processive glycosyl hydrolase that may be able to make multiple hydrolysis events for each binding event. Mutations to acidic mammalian chitinase have been associated with asthma, and genetic deletion of the enzyme in mice results in significantly increased morbidity and mortality with age. We initially set out to reverse this phenotype by engineering hyperactive acidic mammalian chitinase variants. Using a directed evolution screening approach using commercial fluorogenic substrates, we identified mutations with consistent increases in activity. To determine whether the activity increases observed with oligomeric substrates were consistent with more biologically relevant chitin substrates, we developed new assays to quantify chitinase activity with colloidal crystalline chitin, and identified a high throughput fluorogenic assay that gives sufficient signal to noise advantages to quantify changes to activity due to the addition or removal of a chitin binding domain to the enzyme. We show that the activity increasing mutations derived from our directed evolution screen were lost when crystalline substrates were used. In contrast, naturally occurring gain-of-function mutations gave similar results with oligomeric and crystalline substrates. We also show that the activity differences between acidic mammalian chitinase and chitotriosidase are reduced in the context of crystalline substrate, suggesting that previously reported activity differences with oligomeric substrates may have been largely driven by differential substrate specificity for the oligomers. These results highlight the need for assays against more physiological substrates when engineering complex metabolic enzymes, and provide a new approach that may be broadly applicable to engineering glycosyl hydrolases.


Plant Omics ◽  
2017 ◽  
Vol 10 (05) ◽  
pp. 247-251 ◽  
Author(s):  
Yurnaliza ◽  
◽  
Rizkita Rachmi Esyanti ◽  
Agus Susanto ◽  
I Nyoman Pugeg Aryantha ◽  
...  

2021 ◽  
Vol 138 ◽  
pp. 111465
Author(s):  
Chunli Hu ◽  
Zhiyuan Ma ◽  
Jiaxing Zhu ◽  
Yi Fan ◽  
Biguang Tuo ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1581
Author(s):  
Arslan Ali ◽  
Bernhard Ellinger ◽  
Sophie C. Brandt ◽  
Christian Betzel ◽  
Martin Rühl ◽  
...  

Staphylotrichum longicolleum FW57 (DSM105789) is a prolific chitinolytic fungus isolated from wood, with a chitinase activity of 0.11 ± 0.01 U/mg. We selected this strain for genome sequencing and annotation, and compiled its growth characteristics on four different chitinous substrates as well as two agro-industrial waste products. We found that the enzymatic mixture secreted by FW57 was not only able to digest pre-treated sugarcane bagasse, but also untreated sugarcane bagasse and maize leaves. The efficiency was comparable to a commercial enzymatic cocktail, highlighting the potential of the S. longicolleum enzyme mixture as an alternative pretreatment method. To further characterize the enzymes, which efficiently digested polymers such as cellulose, hemicellulose, pectin, starch, and lignin, we performed in-depth mass spectrometry-based secretome analysis using tryptic peptides from in-gel and in-solution digestions. Depending on the growth conditions, we were able to detect from 442 to 1092 proteins, which were annotated to identify from 134 to 224 putative carbohydrate-active enzymes (CAZymes) in five different families: glycoside hydrolases, auxiliary activities, carbohydrate esterases, polysaccharide lyases, glycosyl transferases, and proteins containing a carbohydrate-binding module, as well as combinations thereof. The FW57 enzyme mixture could be used to replace commercial enzyme cocktails for the digestion of agro-residual substrates.


Sign in / Sign up

Export Citation Format

Share Document