scholarly journals Stratocladistic analysis and taxonomic revision of the character-poor New Zealand crassatellid bivalves Spissatella and Eucrassatella

2014 ◽  
Vol 81 (1) ◽  
pp. 104-123 ◽  
Author(s):  
Katie S. Collins ◽  
James S. Crampton ◽  
Michael Hannah
Zootaxa ◽  
2005 ◽  
Vol 1066 (1) ◽  
pp. 1 ◽  
Author(s):  
FRANZ-RUDOLF SCHNITZLER ◽  
QIAO WANG

The genus Zorion Pascoe (Cerambycidae: Cerambycinae), commonly known as flower longhorn beetle, is endemic to New Zealand where it is widely distributed on the main and some offshore islands. A taxonomic revision of Zorion adults is given, including a description and illustrations of the genus. The previously known species Z. batesi Sharp, Z. guttigerum (Westwood), Z. minutum (Fabricius), and Z. opacum Sharp are redescribed; Z. castum Broun is synonymised with Z.guttigerum. Lectotypes are designated here for Z. guttigerum and Z. opacum. Six new species are described, Z. angustifasciatum sp. nov. from Three Kings Islands, Z. australe sp. nov. from South Island, Z. dugdalei sp. nov. from Poor Knights Island, Z. kaikouraiensis sp. nov. from the Kaikoura region, Z. nonmaculatum sp. nov. from D’Urville Islands, and Z. taranakiensis sp. nov. from the Taranaki region. The species Z. exiguum Gmelin has been excluded from the study because neither the original description nor the holotype could be located. A key to all ten species is included and diagnostic elytral spot patterns are illustrated. Biological information presented is based on publications, collecting records and our observations. A distribution map for all species is included and species distribution is discussed in relation to New Zealand’s biogeographical history.


Zootaxa ◽  
2019 ◽  
Vol 4623 (3) ◽  
pp. 441-484
Author(s):  
SABINE MELZER ◽  
ROD A. HITCHMOUGH ◽  
TRENT BELL ◽  
DAVID G. CHAPPLE ◽  
GEOFF B. PATTERSON

New Zealand has a diverse skink fauna, comprising 45 described native species, and at least 15 undescribed taxa, within the single genus Oligosoma Girard, 1857. One of the earliest described, and best known, species is the speckled skink, Oligosoma infrapunctatum (Boulenger 1887). Despite a relatively stable taxonomic history for nearly 114 years, recent molecular work has indicated that O. infrapunctatum represents a species complex, comprising numerous genetically divergent, range restricted taxa. We completed the first stage of a taxonomic revision of O. infrapunctatum, conducting a morphological re-evaluation of existing voucher material, and newly collected specimens, and generated a molecular phylogeny for the species complex. This allowed us to distinguish six species: O. infrapunctatum, two species resurrected from synonymy (O. newmani, O. robinsoni), and three new species (O. salmo sp. nov., O. albornense sp. nov. O. auroraensis sp. nov.). The name bearing type population of O. infrapunctatum has not been located again for at least 130 years: it remains to be rediscovered and may already be extinct. Two of the six species here are considered ‘Nationally Critical’ (O. albornense sp. nov., O. salmo sp. nov.) under the New Zealand Threat Classification System, the others are Nationally Vulnerable (O. auroraensis sp. nov.) and At Risk—Relict (O. newmani, O. robinsoni). Further taxonomic work will be required to determine the taxonomy of other speckled skink genetic lineages in the South Island, particularly O. aff. infrapunctatum “cobble”, O. “Hokitika”, O. “Southern North Island” and O. “Westport”. 


Brunonia ◽  
1979 ◽  
Vol 2 (2) ◽  
pp. 175 ◽  
Author(s):  
JA Elix

The Australian, New Zealand and Papua New Guinean representatives of Hypogymia are reviewed. Photographs, keys and descriptions are given for the 11 species and five varieties. Two new species are described, H. enteromorphoides and H. kosciuskoensis, as well as a new variety, H. subphysodes var. austerodioides and six new combinations are made, namely H. lugubris var. sublugubris, H. lugubris var. compactior, H. pulchrilobata, H. pul- verata, H. tubularis and H. turgidula. Distribution of these taxa is discussed and maps have been provided. The species included in this revision are H. billardieri, H. enteromorphoides, H. kosciuskoensis, H. lugubris, H. mundata, H. pulchrilobata, H. pulverata, H. subphysodes, H. tubularis, H. turgidula and H. vittata.


2010 ◽  
Vol 24 (2) ◽  
pp. 131 ◽  
Author(s):  
Lorraine D. Cook ◽  
Steven A. Trewick ◽  
Mary Morgan-Richards ◽  
Peter M. Johns

The New Zealand Rhaphidophoridae Walker, 1869 comprise 18 endemic genera (including 8 that are monotypic). Although there are many new species to be described, rationalisation at the genus level is also required due to inconsistencies in their current systematics. Even the largest and best known taxa, including those that occupy cave systems and are the most frequently encountered by people, require taxonomic revision. These cave weta include species assigned to three poorly differentiated genera, Pachyrhamma Brunner v. Wattenwyl, 1888, Gymnoplectron Hutton, 1897 and Turbottoplectron Salmon, 1948, that are best known from North Island New Zealand. We used mitochondrial DNA sequence data to examine their relationships using representatives of each genus. The results indicate that a single genus Pachyrhamma would be appropriate for all, as Gymnoplectron and Turbottoplectron nest phylogenetically within it. There are insufficient morphological, spatial or ecological reasons to justify retention of all three. However, we also note that species level diversity does not correlate with genetic or spatial diversity; some species are genetically well partitioned and widespread while others have narrow ranges in single cave systems and are closely related to one another.


2002 ◽  
Vol 40 (3) ◽  
pp. 437-456 ◽  
Author(s):  
D. J. Blanchon ◽  
B. G. Murray ◽  
J. E. Braggins

2002 ◽  
Vol 16 (6) ◽  
pp. 957 ◽  
Author(s):  
J. T. Jennings ◽  
A. D. Austin

This study examines the phylogeny, taxonomy, distribution and biology of the gasteruptiid subfamily Hyptiogastrinae and, at the same time, presents an overview of the family. Following a cladistic analysis of 35 discrete morphological characters, two monophyletic genera are recognised, Hyptiogaster Kieffer and Pseudofoenus s. l. Kieffer. As a consequence, the genera Aulacofoenus Kieffer, Crassifoenus Crosskey, and Eufoenus Szépligeti are synonymised with Pseudofoenus. A total of 88 species are recognised for the subfamily, 10 species of Hyptiogaster, which are restricted to mainland Australia, and 78 species of Pseudofoenus, 40 of which are described as new. Pseudofoenus has a restricted Gondwanan distribution and is found in Australia including Tasmania (65 spp.), New Guinea and New Britain (5 spp.), the south-west Pacific (New Caledonia, New Hebrides and Fiji – 2 spp.), New Zealand (4 spp.) and South America (2 spp.). No new species have been recorded from either New Zealand or South America. For Pseudofoenus, information on the distribution of each species, their biology (if known) and an identification key are presented.Following a taxonomic revision, the following new species are described: P. baileyi, sp. nov., P. baitetaensis, sp. nov., P. beverlyae, sp. nov., P. caperatus, sp. nov., P. cardaleae, sp. nov., P. carrabinensis, sp. nov., P. claireae, sp. nov., P. collessi, sp. nov., P. coorowensis, sp. nov., P. crosskeyi, sp. nov., P. douglasorum, sp. nov., P. eliseae, sp. nov., P. ericae, sp. nov., P. eustonensis, sp. nov., P. feckneri, sp. nov., P. gressitti, sp. nov., P. gullanae, sp. nov., P. hackeri, sp. nov., P. imbricatus, sp. nov., P. iqbali, sp. nov., P. kadowi, sp. nov., P. karimuiensis, sp. nov., P. kelleri, sp. nov., P. leinsterensis, sp. nov., P. macdonaldi, sp. nov., P. malkini, sp. nov., P. marshalli, sp. nov., P. masneri, sp. nov., P. mitchellae, sp. nov., P. morganensis, sp. nov., P. nalbarraensis, sp. nov., P. pumilis, sp. nov., P. schmidti, sp. nov., P. stevensi, sp. nov., P. tasmaniensis, sp. nov., P. taylori, sp. nov., P. umboiensis, sp. nov., P. walkeri, sp. nov. and P. zborowskii, sp. nov. The synonymy of Aulacofoenus, Crassifoenus and Eufoenus with Pseudofoenus result in the following new combinations: from Aulacofoenus: P. bungeyi (Jennings & Austin), comb. nov., P. deletangi (Schletterer), comb. nov., P. fallax (Schletterer), comb. nov., P. fletcheri (Jennings & Austin), comb. nov., P. goonooensis (Jennings & Austin), comb. nov., P. infumatus (Schletterer), comb. nov., P. kurmondi (Jennings & Austin), comb. nov., P. loxleyi (Jennings & Austin), comb. nov., P. marionae (Jennings & Austin), comb. nov., P. perenjorii (Jennings & Austin), comb. nov., P. swani (Jennings & Austin), comb. nov., P. thoracicus (Guérin Menéville), comb. nov., P. whiani (Jennings & Austin), comb. nov. and P. wubinensis (Jennings & Austin), comb. nov.; from Crassifoenus: P. houstoni (Jennings & Austin), comb. nov., P. grossitarsis (Kieffer), comb. nov and P. macronyx (Schletterer), comb. nov.; and from Eufoenus: P. antennalis (Schletterer), comb. nov., P. australis (Westwood), comb. nov., P. crassitarsis (Kieffer), comb. nov., P. darwini (Westwood), comb. nov., P. extraneus (Turner), comb. nov., P. ferrugineus (Crosskey), comb. nov., P. floricolus (Turner), comb. nov., P. inaequalis (Turner), comb. nov., P. melanopleurus (Crosskey), comb. nov., P. minimus (Turner), comb. nov., P. nitidiusculus (Turner), comb. nov., P. patellatus (Westwood), comb. nov., P. pilosus (Kieffer), comb. nov., P. reticulatus (Crosskey), comb. nov., P. rieki (Crosskey), comb. nov., P. ritae (Cheesman), comb. nov. and P. spinitarsis (Westwood), comb. nov. Pseudofoenus microcephalus (Crosskey), comb. nov. is transferred from Hyptiogaster and Eufoenus flavinervis (Kieffer) remains incertae sedis.


2021 ◽  
Author(s):  
◽  
Katie Susanna Collins

<p>A novel, highly-integrated approach combining morphometric, stratocladistic and sclerochronological methods has been applied to two genera of New Zealand Cenozoic crassatellid bivalve (Family Crassatellidae): Spissatella Finlay, 1926 and Eucrassatella Iredale, 1924. This study builds on previous work on Spissatella that demonstrated their amenability to shape analysis and provided a foundation for evolutionary studies of the group. The taxonomy of these crassatellids has been in need of revision; a number of changes to generic placement having been proposed in recent publications without redescription. These bivalves are character-depauperate and known only from fossil material within New Zealand, making them challenging subjects for the phylogenetic analysis that would, ideally, inform taxonomic revision. Geometric morphometric methods have been used to characterise the morphological variation of the study group in terms of shape. Landmarks/semilandmarks that capture internal hard-part morphology and external shell shape, have been compared with internal landmarks only, outline shape semilandmarks only, and outline shape Fourier transform methods, and are shown to best combine comprehensive coverage of total shell form with high correct reassignment of individuals to taxa in multidimensional morphospace. Procrustes-superimposed landmark/semilandmark configurations have been ordinated using Principal Components Analysis (PCA), and PCA plots have been used to compare the shape variation of each species. The independance in morphospace of Spissatella n. sp. C from S. trailli and S. clifdenensis has been established. Covariation of internal morphology and shell-shape has been interpreted as supporting the interdependance of shell and body/mantle proposed by Stasek (1963). PCA scores have been combined with traditional morphological characters and stratigraphic data to produce a phylogenetic tree using stratocladistics, a form of parsimony-based analysis which seeks to minimise combined morphological and stratigraphic debt. This technique also assesses the placement of taxa in ancestral positions on internal nodes of the tree. Combining discretised morphometric data with stratigraphic and morphological data in a single analysis has been shown to produce a more resolved tree than analyses based only on continuous morphometric data. The new analyses demonstrate paraphyly of both Eucrassatella and Spissatella as previously recognised. A taxonomic revision of the studied taxa has been undertaken, incorporating information from both morphometric and phylogenetic studies. Spissatella subobesa and S. maudensis are referred to Eucrassatella. Spissatella discrepans is synonymised with S. acculta. Triplicitella n. gen. and S.maxwelli n. sp. are described. Oxygen isotope analysis has been employed to show that shell-banding in these species is, on average, likely to have been laid down annually. Using this information, the longitudinal dataset of outlines from Crampton & Maxwell (2000) has been recalibrated to use chronological age rather than size to compare shape across taxa, and investigate heterochrony in twelve pairs of species representing either ancestor-descendant, sister-group or lineage-segment relationships. All of the heterochronic processes sensu Gould (1977), namely progenesis, neoteny, acceleration and hypermorphosis, as well as proportioned dwarfism and proportioned gigantism, are identified as having affected evolution within this clade.</p>


2021 ◽  
Author(s):  
◽  
Katie Susanna Collins

<p>A novel, highly-integrated approach combining morphometric, stratocladistic and sclerochronological methods has been applied to two genera of New Zealand Cenozoic crassatellid bivalve (Family Crassatellidae): Spissatella Finlay, 1926 and Eucrassatella Iredale, 1924. This study builds on previous work on Spissatella that demonstrated their amenability to shape analysis and provided a foundation for evolutionary studies of the group. The taxonomy of these crassatellids has been in need of revision; a number of changes to generic placement having been proposed in recent publications without redescription. These bivalves are character-depauperate and known only from fossil material within New Zealand, making them challenging subjects for the phylogenetic analysis that would, ideally, inform taxonomic revision. Geometric morphometric methods have been used to characterise the morphological variation of the study group in terms of shape. Landmarks/semilandmarks that capture internal hard-part morphology and external shell shape, have been compared with internal landmarks only, outline shape semilandmarks only, and outline shape Fourier transform methods, and are shown to best combine comprehensive coverage of total shell form with high correct reassignment of individuals to taxa in multidimensional morphospace. Procrustes-superimposed landmark/semilandmark configurations have been ordinated using Principal Components Analysis (PCA), and PCA plots have been used to compare the shape variation of each species. The independance in morphospace of Spissatella n. sp. C from S. trailli and S. clifdenensis has been established. Covariation of internal morphology and shell-shape has been interpreted as supporting the interdependance of shell and body/mantle proposed by Stasek (1963). PCA scores have been combined with traditional morphological characters and stratigraphic data to produce a phylogenetic tree using stratocladistics, a form of parsimony-based analysis which seeks to minimise combined morphological and stratigraphic debt. This technique also assesses the placement of taxa in ancestral positions on internal nodes of the tree. Combining discretised morphometric data with stratigraphic and morphological data in a single analysis has been shown to produce a more resolved tree than analyses based only on continuous morphometric data. The new analyses demonstrate paraphyly of both Eucrassatella and Spissatella as previously recognised. A taxonomic revision of the studied taxa has been undertaken, incorporating information from both morphometric and phylogenetic studies. Spissatella subobesa and S. maudensis are referred to Eucrassatella. Spissatella discrepans is synonymised with S. acculta. Triplicitella n. gen. and S.maxwelli n. sp. are described. Oxygen isotope analysis has been employed to show that shell-banding in these species is, on average, likely to have been laid down annually. Using this information, the longitudinal dataset of outlines from Crampton & Maxwell (2000) has been recalibrated to use chronological age rather than size to compare shape across taxa, and investigate heterochrony in twelve pairs of species representing either ancestor-descendant, sister-group or lineage-segment relationships. All of the heterochronic processes sensu Gould (1977), namely progenesis, neoteny, acceleration and hypermorphosis, as well as proportioned dwarfism and proportioned gigantism, are identified as having affected evolution within this clade.</p>


2021 ◽  
Author(s):  
◽  
Phil J. Sirvid

<p>The New Zealand Thomisidae (crab spiders) are represented in New Zealand by two subfamilies (Stephanopinae and Thomisinae) and were used as a model group to test two competing theories on the origins of the New Zealand spider fauna. The New Zealand thomisids are also given their first full taxonomic revision. The two origin models essentially represent species radiations following recent dispersal or ancient vicariance events. Modern distribution data suggested that the stephanopines are poor dispersers and may provide evidence demonstrating a long period of separation from Australia; while in contrast, thomisines are known to be excellent dispersers. Maximum Likelihood and Bayesian analyses of cytochrome c suboxidase subunit I (COI), 28S ribosomal RNA (28S), histone H3 (H3), NADH dehyrogenase 1 (ND1) data and a combined genetic dataset was undertaken. Results indicate New Zealand stephanopines and thomisines form distinct endemic groups separate from sampled Australian species and appear to have separated from them around 5-6 million years ago. Additionally, genetic data from this study showed i) colour variations are not indicative of cryptic species; ii) previously described species are genetically distinct; iii) several suspected new species are also genetically distinct; iv) the relatively recent establishment of two Australian stephanopines and the occurrence of similar COI haplotypes in disjunct locations suggest that the dispersal ability of stephanopines is greater than previously thought and that radiation following colonization from Australia is a plausible explanation for the current diversity of the New Zealand thomisid biota. The taxonomic revision raises the number of described species from eight to eleven based on a combination of morphological and genetic data. In the stephanopines, Bryantymella Gen. nov. is erected to contain the type species Bryantymella angularis (Urquhart, 1885) comb. nov. as well as B. angulata (Urquhart, 1885) comb. nov., B. thorini sp. nov. and B. brevirostris sp. nov. Two Australian species, Sidymella longipes (Koch, 1874) and S. trapezia (Koch, 1874), are also recorded for New Zealand. Sidymella benhami (Hogg, 1910) is considered to be a junior synonym of Bryantymella angulata (Urquhart, 1885). In the thomisines, all species are now included in the previously monotypic genus Cymbachina Bryant, 1933. The genus now encompasses the type species C. albobrunnea (Urquhart, 1893), C. ambara (Urquhart, 1885) comb. nov., C. albolimbata (L. Koch, 1893) comb. nov., C. sphaeroides (Urquhart, 1885) comb. nov. and D. urquharti sp. nov. Synema suteri Dahl, 1907 is regarded as a junior synonym of C. ambara (L. Koch 1893). All previously described species are redescribed to a modern standard and sexes for some species are described for the first time. Three new species are described. Photographs of adults and diagnostic genitalic characters are included, as are diagnostic keys and updated synonymic, geographic and biological information. Overall, this study indicates that New Zealand thomisids appear to have split from their Australian relatives some 5-6 million years ago and taken in concert with the recent establishment of two Australian stephanopine species, it appears that dispersal to New Zealand by Australian colonists and subsequent radiation into endemic New Zealand forms is a plausible explanation for the current state of the fauna. Genetic and morphological data are mutually supporting and in concert have helped inform the first taxonomic revision ever undertaken for this family in New Zealand.</p>


Sign in / Sign up

Export Citation Format

Share Document