scholarly journals Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level

2012 ◽  
Vol 5 (2) ◽  
pp. 418-429 ◽  
Author(s):  
Jairus B. Bowne ◽  
Tim A. Erwin ◽  
Juan Juttner ◽  
Thorsten Schnurbusch ◽  
Peter Langridge ◽  
...  
Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 577 ◽  
Author(s):  
Cesar G. Lopez ◽  
Gary M. Banowetz ◽  
C. James Peterson ◽  
Warren E. Kronstad

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2557
Author(s):  
Dilara Maslennikova ◽  
Oksana Lastochkina

We evaluated the effect of endobacteria Bacillus subtilis (strain 10–4) as a co-inoculant for promoting plant growth and redox metabolism in two contrasting genotypes of Triticum aestivum L. (wheat): Ekada70 (drought tolerant (DT)) and Salavat Yulaev (drought susceptible (DS)) in early stages of adaptation to drought (12% PEG–6000). Results revealed that drought reduced growth and dramatically augmented oxidative stress markers, i.e., hydrogen peroxide (H2O2) and lipid peroxidation (MDA). Furthermore, the depletion of ascorbate (AsA) and glutathione (GSH), accompanied by a significant activation of ascorbate peroxidase (APX) and glutathione reductase (GR), in both stressed wheat cultivars (which was more pronounced in DS genotype) was found. B. subtilis had a protective effect on growth and antioxidant status, wherein the stabilization of AsA and GSH levels was revealed. This was accompanied by a decrease of drought-caused APX and GR activation in DS plants, while in DT plants additional antioxidant accumulation and GR activation were observed. H2O2 and MDA were considerably reduced in both drought-stressed wheat genotypes because of the application of B. subtilis. Thus, the findings suggest the key roles in B. subtilis-mediated drought tolerance in DS cv. Salavat Yulaev and DT cv. Ekada70 played are AsA and GSH, respectively; which, in both cases, resulted in reduced cell oxidative damage and improved growth in seedlings under drought.


2017 ◽  
Vol 9 (21) ◽  
pp. 44-55
Author(s):  
Maryam Tahmasb Ali ◽  
Ali Asghari ◽  
Omid Safalian ◽  
Hamidreza Mohammaddoust Chaman Abad ◽  
Ali Rasoul Zadeh

2007 ◽  
Vol 87 (2) ◽  
pp. 289-292 ◽  
Author(s):  
H. Wang ◽  
T. N. McCaig ◽  
R. M. DePauw ◽  
J. M. Clarke ◽  
R. Lemke

Recently developed cultivars of Canada Western Red Spring (CWRS) wheat (Triticum aestivum L.) and Canada Western Amber Durum (CWAD) (Triticum turgidum L. var durum) produced significantly more grain than older cultivars. This production was attributed to higher harvest indices and better water use efficiency. Durum cultivars and CWRS AC Intrepid and AC Barrie extracted relatively more soil water below 55 cm, which may be advantageous in minimizing leaching and related to drought tolerance during grain-filling. Key words: Hexaploid wheat, durum, water use, soil water


2018 ◽  
Vol 6 (3) ◽  
pp. 95-109
Author(s):  
Manal Eid

The present study was carried out to conduct drought tolerance in three wheat cultivars including susceptible (Gemmiza7) and tolerant (Sakha93 and Sahel1). Molecular characterization was done by 26 SSR markers located on chromosome7 which was associated with drought tolerance in many previous studies. 26 SSR markers were polymorphic and thus showed 100% polymorphism. The number of alleles per locus varied from 2 to 3 alleles with an average (2.62). The polymorphism information content (PIC) value ranged from 0.34 to 0.59, with a mean of 0.51. The discrimination power (Dp) value ranged between 0.67 and 0.78 with an average of 0.71 per locus and Heterozygosity (He) value varied from 0.44 to 0.67 with an average of 0.59. The genetic relationships estimated by the polymorphism of SSR markers revealed a greater level of genetic variability in wheat cultivars of wide adaptability and applicability. Whereas an average of combined probability value for the SSR markers was 6.15 x 10-16, suggests the capability of the marker system to distinguish identity and purity of wheat cultivars. In addition to the SSR markers revealed various bands that were either absent or present within tolerant cultivars (Sakha93 and Sahel1) which were altogether absent in susceptible cultivar (Gemmiza7). Also, SSRs of diagnostic and curatorial importance were discerned as ‘stand-alone’ molecular descriptors for barcoding the application of DNA sequences of standardized genetic markers for the identification of wheat cultivars. However, the genetic information in this study could provide useful information to address breeding programs and germplasm resource management.


Sign in / Sign up

Export Citation Format

Share Document