scholarly journals Cloning, production and characterisation of wild type and mutant forms of the R·EcoK endonucleases

1993 ◽  
Vol 21 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Marie Weiserova ◽  
Pavel Janscak ◽  
Oldrich Benada ◽  
Josef Hubácek ◽  
Vitaly E. Zinkevich ◽  
...  
Keyword(s):  
Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Erin N Asleson ◽  
Dennis M Livingston

Abstract We investigated the stability of the Saccharomyces cerevisiae Rad52 protein to learn how a cell controls its quantity and longevity. We measured the cellular levels of wild-type and mutant forms of Rad52p when expressed from the RAD52 promoter and the half-lives of the various forms of Rad52p when expressed from the GAL1 promoter. The wild-type protein has a half-life of 15 min. rad52 mutations variably affect the cellular levels of the protein products, and these levels correlate with the measured half-lives. While missense mutations in the N terminus of the protein drastically reduce the cellular levels of the mutant proteins, two mutations—one a deletion of amino acids 210-327 and the other a missense mutation of residue 235—increase the cellular level and half-life more than twofold. These results suggest that Rad52p is subject to post-translational regulation. Proteasomal mutations have no effect on Rad52p half-life but increase the amount of RAD52 message. In contrast to Rad52p, the half-life of Rad51p is >2 hr, and RAD51 expression is unaffected by proteasomal mutations. These differences between Rad52p and Rad51p suggest differential regulation of two proteins that interact in recombinational repair.


2002 ◽  
Vol 76 (9) ◽  
pp. 4456-4466 ◽  
Author(s):  
Jennifer A. Gruenke ◽  
R. Todd Armstrong ◽  
William W. Newcomb ◽  
Jay C. Brown ◽  
Judith M. White

ABSTRACT Influenza virus hemagglutinin undergoes a conformational change in which a loop-to-helix “spring-loaded” conformational change forms a coiled coil that positions the fusion peptide for interaction with the target bilayer. Previous work has shown that two proline mutations designed to disrupt this change disrupt fusion but did not determine the basis for the fusion defect. In this work, we made six additional mutants with single proline substitutions in the region that undergoes the spring-loaded conformational change and two additional mutants with double proline substitutions in this region. All double mutants were fusion inactive. We analyzed one double mutant, F63P/F70P, as an example. We observed that F63P/F70P undergoes key low-pH-induced conformational changes and binds tightly to target membranes. However, limited proteolysis and electron microscopy observations showed that the mutant forms a coiled coil that is only ∼50% the length of the wild type, suggesting that it is splayed in its N-terminal half. This work further supports the hypothesis that the spring-loaded conformational change is necessary for fusion. Our data also indicate that the spring-loaded conformational change has another role beyond presenting the fusion peptide to the target membrane.


2008 ◽  
Vol 294 (1) ◽  
pp. E28-E35 ◽  
Author(s):  
Michale Bouskila ◽  
Michael F. Hirshman ◽  
Jørgen Jensen ◽  
Laurie J. Goodyear ◽  
Kei Sakamoto

Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6- P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3α and -β genes are replaced with mutant forms (GSK3α/βS21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3α/βS21A/S21A/S9A/S9Amice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6- P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6- P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.


2007 ◽  
Vol 102 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Samer Abou Ezzi ◽  
Makoto Urushitani ◽  
Jean-Pierre Julien

1992 ◽  
Vol 3 (12) ◽  
pp. 1353-1371 ◽  
Author(s):  
C A Wilcox ◽  
K Redding ◽  
R Wright ◽  
R S Fuller

Kex2 protease processes pro-alpha-factor in a late Golgi compartment in Saccharomyces cerevisiae. The first approximately 30 residues of the 115 amino acid CO2H-terminal cytosolic tail (C-tail) of the Kex2 protein (Kex2p) contain a Golgi retention signal that resembles coated-pit localization signals in mammalian cell surface receptors. Mutation of one (Tyr713) of two tyrosine residues in the C-tail or deletion of sequences adjacent to Tyr713 results in loss of normal Golgi localization. Surprisingly, loss of the Golgi retention signal resulted in transport of C-tail mutant Kex2p to the vacuole (yeast lysosome), as judged by kinetics of degradation and by indirect immunofluorescence. Analysis of the loss of Kex2 function in vivo after shutting off expression of wild-type or mutant forms proved that mutations that cause rapid vacuolar turnover do so by increasing the rate of exit of the enzyme from the pro-alpha-factor processing compartment. The most likely explanation for these results is that mutation of the Golgi retention signal in the C-tail results in transport of Kex2p to the vacuole by default. Wild-type Kex2p also was transported to the vacuole at an increased rate when overproduced, although apparently not due to saturation of a Golgi-retention mechanism. Instead, the wild-type and C-tail mutant forms of Kex2p may follow distinct paths to the vacuole.


2011 ◽  
Vol 10 (4) ◽  
pp. 512-520 ◽  
Author(s):  
Hiroshi Ochiai ◽  
Kosuke Takeda ◽  
Masashi Fukuzawa ◽  
Atsushi Kato ◽  
Shigeharu Takiya ◽  
...  

ABSTRACT Dictyostelium discoideum has protein kinases AKT/PKBA and PKBR1 that belong to the AGC family of kinases. The protein kinase B-related kinase (PKBR1) has been studied with emphasis on its role in chemotaxis, but its roles in late development remained obscure. The pkbR1 null mutant stays in the first finger stage for about 16 h or longer. Only a few aggregates continue to the migrating slug stage; however, the slugs immediately go back probably to the previous first finger stage and stay there for approximately 37 h. Finally, the mutant fingers diversify into various multicellular bodies. The expression of the pkbR1 finger protein probably is required for development to the slug stage and to express ecmB , which is first observed in migrating slugs. The mutant also showed no ST-lacZ expression, which is of the earliest step in differentiation to one of the stalk cell subtypes. The pkbR1 null mutant forms a small number of aberrant fruiting bodies, but in the presence of 10% of wild-type amoebae the mutant preferentially forms viable spores, driving the wild type to form nonviable stalk cells. These results suggest that the mutant has defects in a system that changes the physiological dynamics in the prestalk cell region of a finger. We suggest that the arrest of its development is due to the loss of the second wave of expression of a protein kinase A catalytic subunit gene ( pkaC ) only in the prestalk region of the pkbR1 null mutant.


Sign in / Sign up

Export Citation Format

Share Document