scholarly journals Stereospecificity of human DNA polymerases α,β,γ,§ and ɛ, HIV-reverse transcriptase, HSV- DNA polymerase, calf thymus terminal transferase andEscherichia coliDNA polymerase I in recognizing D- and L-thymidine 5′-triphosphate as substrate

1995 ◽  
Vol 23 (15) ◽  
pp. 2840-2847 ◽  
Author(s):  
F. Focher ◽  
G. Maga ◽  
A. Bendiscioli ◽  
M. Capobianco ◽  
F. Colonna ◽  
...  
1995 ◽  
Vol 6 (4) ◽  
pp. 217-221 ◽  
Author(s):  
J. M. Cherrington ◽  
S. J. W. Allen ◽  
N. Bischofberger ◽  
M. S. Chen

The inhibitory effects of the diphosphates of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and its analogues on HIV reverse transcriptase and human DNA polymerases α, β, and γ have been studied. The analogues investigated are the diphosphates of 9-(2-phosphonylmethoxypropyl)adenine (PMPApp), 9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine (PMPDAPpp), and (2R,5R)-9-[2,5-dihydro-5-(phosphonyl methoxy)-2-furanyl]adenine (D4APpp). These four compounds are much more inhibitory to HIV reverse transcriptase when an RNA template rather than a DNA template is used. The Ki, values for the four compounds range from 11 to 22 nM with an RNA template. The Ki, values for ddCTP and AZTTP are 54 nM and 8 nM, respectively. PMEApp and its analogues show varying degrees of inhibition of the human DNA polymerases. The Ki, values for PMEApp, PMPApp and PMPDAPpp against DNA polymerase α are in the micromolar range, while D4APpp is a poor inhibitor of this enzyme with a Ki, value of 65.9 μM. The inhibition of DNA polymerase β by PMEApp, PMPApp and D4APpp is minimal, while PMPDAPpp shows higher inhibition of DNA polymerase β with a Ki, value of 9.71 μM. The Ki, values for PMEApp and D4APpp against DNA polymerase γ are submicromolar, while PMPApp and PMPDAPpp are much less inhibitory to this enzyme. For comparison, ddCTP was found to be a more potent inhibitor of DNA polymerases β and γ than the diphosphates of PMEA and its analogues.


Science ◽  
1974 ◽  
Vol 183 (4127) ◽  
pp. 867-869 ◽  
Author(s):  
B. J. Lewis ◽  
J. W. Abrell ◽  
R. G. Smith ◽  
R. C. Gallo

Parasitology ◽  
1993 ◽  
Vol 107 (2) ◽  
pp. 135-139 ◽  
Author(s):  
A. Makioka ◽  
B. Stavros ◽  
J. T. Ellis ◽  
A. M. Johnson

SUMMARYA DNA polymerase activity has been detected and characterized in crude extracts from tachzoites of Toxoplasma gondii. The enzyme has a sedimentation coefficient of 6·4 S, corresponding to an approximate molecular weight of 150000 assuming a globular shape. Like mammalian DNA polymerase α, the DNA polymerase of T. gondii was sensitive to N-ethylmaleimide and inhibited by high ionic strength. However, the enzyme activity was not inhibited by aphidicolin which is an inhibitor of mammalian DNA polymerases α, δ and ε and also cytosine-β-D-arabinofuranoside-5′-triphosphate which is an inhibitor of α polymerase. The activity was inhibited by 2′,3′-dideoxythymidine-5′-triphosphate which is an inhibitor of mammalian DNA polymerase β and γ. Magnesium ions (Mg2+) were absolutely required for activity and its optimal concentration was 6 mM. The optimum potassium (K+) concentration was 50 mM and a higher concentration of K+ markedly inhibited the activity. Activity was optimal at pH 8. Monoclonal antibodies against human DNA polymerase did not bind to DNA polymerase of T. gondii. Thus the T. gondii enzyme differs from the human enzymes and may be a useful target for the design of toxoplasmacidal drugs.


1981 ◽  
Vol 36 (9-10) ◽  
pp. 813-819 ◽  
Author(s):  
Hans Eckstein

Abstract Dedicated to Professor Dr. Joachim Kühnau on the Occasion of His 80th Birthday cGMP, DNA Polymerase Activity, DNA Polymerase A, DNA Polymerase I, Baker's Yeast DNA polymerase activity from extracts of growing yeast cells is inhibited by cGMP. Experiments with partially purified yeast DNA polymerases show, that cGMP inhibits DNA polymerase A (DNA polymerase I from Chang), which is the main component of the soluble DNA polymerase activity in yeast extracts, by competing for the enzyme with the primer-template DNA. Since the enzyme is not only inhibited by 3',5'-cGMP, but also by 3',5'-cAMP, the 3': 5'-phosphodiester seems to be crucial for the competition between cGMP and primer. This would be inconsistent with the concept of a 3'-OH primer binding site in the enzyme. The existence of such a site in the yeast DNA polymerase A is indicated from studies with various purine nucleoside monophosphates.When various DNA polymerases are compared, inhibition by cGMP seems to be restricted to those enzymes, which are involved in DNA replication. DNA polymerases with an associated nuclease activity are not inhibited, DNA polymerase B from yeast is even activated by cGMP. Though some relations between the cGMP effect and the presumed function of the enzymes in the living cell are apparent, the biological meaning of the observations in general remains open.


2005 ◽  
Vol 25 (19) ◽  
pp. 8748-8754 ◽  
Author(s):  
William T. Wolfle ◽  
Robert E. Johnson ◽  
Irina G. Minko ◽  
R. Stephen Lloyd ◽  
Satya Prakash ◽  
...  

ABSTRACT Acrolein, an α,β-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from oxidation of polyamines. The reaction of acrolein with the N 2 group of guanine in DNA leads to the formation of a cyclic adduct, γ-hydroxy-1,N 2-propano-2′-deoxyguanosine (γ-HOPdG). Previously, we have shown that proficient replication through the γ-HOPdG adduct can be mediated by the sequential action of human DNA polymerases (Pols) ι and κ, in which Polι incorporates either pyrimidine opposite γ-HOPdG, but Polκ extends only from the cytosine. Since γ-HOPdG can adopt either a ring-closed cyclic form or a ring-opened form in DNA, to better understand the mechanisms that Pols ι and κ employ to promote replication through this lesion, we have examined the ability of these polymerases to replicate through the structural analogs of γ-HOPdG that are permanently either ring closed or ring opened. Our studies with these model adducts show that whereas the ring-opened form of γ-HOPdG is not inhibitory to synthesis by human Pols η, ι, or κ, only Polι is able to incorporate nucleotides opposite the ring-closed form, which is known to adopt a syn conformation in DNA. From these studies, we infer that (i) Pols η, ι, and κ have the ability to proficiently replicate through minor-groove DNA lesions that do not perturb the Watson-Crick hydrogen bonding of the template base with the incoming nucleotide, and (ii) Polι can accommodate a minor-groove-adducted template purine which adopts a syn conformation in DNA and forms a Hoogsteen base pair with the incoming nucleotide.


1993 ◽  
Vol 18 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Svetlana N. Khodyreva ◽  
Vladimir N. Podust ◽  
Dmitry S. Sergeev ◽  
Evgenia M. Ivanova ◽  
Elena I. Frolova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document