scholarly journals Structure-infectivity analysis of the human rhinovirus genomic RNA 3' non-coding region

1996 ◽  
Vol 24 (11) ◽  
pp. 2133-2142 ◽  
Author(s):  
S Todd
2001 ◽  
Vol 75 (22) ◽  
pp. 10979-10990 ◽  
Author(s):  
Kinga Gerber ◽  
Eckard Wimmer ◽  
Aniko V. Paul

ABSTRACT We have previously shown that the RNA polymerase 3Dpolof human rhinovirus 2 (HRV2) catalyzes the covalent linkage of UMP to the terminal protein (VPg) using poly(A) as a template (K. Gerber, E. Wimmer, and A. V. Paul, J. Virol. 75:10969–10978, 2001). The products of this in vitro reaction are VPgpU, VPgpUpU, and VPg-poly(U), the 5′ end of minus-strand RNA. In the present study we used an assay system developed for poliovirus 3Dpol (A. V. Paul, E. Rieder, D. W. Kim, J. H. van Boom, and E. Wimmer, J. Virol. 74: 10359–10370, 2000) to search for a viral sequence or structure in HRV2 RNA that would provide specificity to this reaction. We now show that a small hairpin in HRV2 RNA [cre(2A)], located in the coding sequence of 2Apro, serves as the primary template for HRV2 3Dpol in the uridylylation of HRV2 VPg, yielding VPgpU and VPgpUpU. The in vitro reaction is strongly stimulated by the addition of purified HRV2 3CDpro. Our analyses suggest that HRV2 3Dpol uses a “slide-back” mechanism during synthesis of the VPg-linked precursors. The corresponding cis- replicating RNA elements in the 2CATPase coding region of poliovirus type 1 Mahoney (I. Goodfellow, Y. Chaudhry, A. Richardson, J. Meredith, J. W. Almond, W. Barclay, and D. J. Evans, J. Virol. 74:4590–4600, 2000) and VP1 of HRV14 (K. L. McKnight and S. M. Lemon, RNA 4:1569–1584, 1998) can be functionally exchanged in the assay with cre(2A) of HRV2. Mutations of either the first or the second A in the conserved A1A2A3CA sequence in the loop of HRV2 cre(2A) abolished both viral growth and the RNA's ability to serve as a template in the in vitro VPg uridylylation reaction.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 919 ◽  
Author(s):  
Marie Glenet ◽  
Laetitia Heng ◽  
Domitille Callon ◽  
Anne-Laure Lebreil ◽  
Paul-Antoine Gretteau ◽  
...  

Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5′ end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (internal ribosome entry site, IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5′ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I (Retinoic acid inducible gene I) or MDA5 (melanoma differentiation-associated protein 5) receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host–cell interactions driving the development of acute or persistent EV-B infections.


Author(s):  
Bingtian Shi ◽  
Qinqin Song ◽  
Xiaonuan Luo ◽  
Juan Song ◽  
Dong Xia ◽  
...  

2008 ◽  
Vol 36 (4) ◽  
pp. 690-693 ◽  
Author(s):  
Emiliano P. Ricci ◽  
Ricardo Soto Rifo ◽  
Cécile H. Herbreteau ◽  
Didier Decimo ◽  
Théophile Ohlmann

The full-length genomic RNA of lentiviruses can be translated to produce proteins and incorporated as genomic RNA in the viral particle. Interestingly, both functions are driven by the genomic 5′-UTR (5′-untranslated region), which harbours structural RNA motifs for the replication cycle of the virus. Recent work has shown that this RNA architecture also functions as an IRES (internal ribosome entry site) in HIV-1 and -2, and in SIV (simian immunodeficiency virus). In addition, the IRES extends to the gag coding region for all these viruses and this leads to the synthesis of shorter isoforms of the Gag polyprotein from downstream initiation codons. In the present study, we have investigated how different members of the lentivirus family (namely HIV-1 and -2, and SIV) can initiate protein synthesis by distinct mechanisms. For this, we have used the competitive reticulocyte lysate that we have recently described. Our results show that HIV-1 is able to drive the synthesis of the Gag polyprotein both by a classical cap-dependent mechanism and an IRES, whereas HIV-2 and SIV appear to use exclusively an IRES mechanism.


Viruses ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 17 ◽  
Author(s):  
Elodie Rance ◽  
Jerome Tanner ◽  
Caroline Alfieri

The hepatitis C virus (HCV) genome contains structured elements thought to play important regulatory roles in viral RNA translation and replication processes. We used in vitro RNA binding assays to map interactions involving the HCV 5′UTR and distal sequences in NS5B to examine their impact on viral RNA replication. The data revealed that 5′UTR nucleotides (nt) 95–110 in the internal ribosome entry site (IRES) domain IIa and matching nt sequence 8528–8543 located in the RNA-dependent RNA polymerase coding region NS5B, form a high-affinity RNA-RNA complex in vitro. This duplex is composed of both wobble and Watson-Crick base-pairings, with the latter shown to be essential to the formation of the high-affinity duplex. HCV genomic RNA constructs containing mutations in domain IIa nt 95–110 or within the genomic RNA location comprising nt 8528–8543 displayed, on average, 5-fold less intracellular HCV RNA and 6-fold less infectious progeny virus. HCV genomic constructs containing complementary mutations for IRES domain IIa nt 95–110 and NS5B nt 8528–8543 restored intracellular HCV RNA and progeny virus titers to levels obtained for parental virus RNA. We conclude that this long-range duplex interaction between the IRES domain IIa and NS5B nt 8528–8543 is essential for optimal virus replication.


Author(s):  
Marie GLENET ◽  
Laetitia HENG ◽  
Domitille CALLON ◽  
Anne-Laure LEBREIL ◽  
Paul-Antoine GRETTEAU ◽  
...  

Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5'end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5’ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I or MDA5 receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host-cell interactions driving the development of acute or persistent EV-B infections.


2005 ◽  
Vol 86 (3) ◽  
pp. 697-706 ◽  
Author(s):  
Pia Laine ◽  
Carita Savolainen ◽  
Soile Blomqvist ◽  
Tapani Hovi

Phylogenetic analysis of the capsid protein VP1 coding sequences of all 101 human rhinovirus (HRV) prototype strains revealed two major genetic clusters, similar to that of the previously reported VP4/VP2 coding sequences, representing the established two species, Human rhinovirus A (HRV-A) and Human rhinovirus B (HRV-B). Pairwise nucleotide identities varied from 61 to 98 % within and from 46 to 55 % between the two HRV species. Interserotypic sequence identities in both HRV species were more variable than those within any Human enterovirus (HEV) species in the same family. This means that unequivocal serotype identification by VP1 sequence analysis used for HEV strains may not always be possible for HRV isolates. On the other hand, a comprehensive insight into the relationships between VP1 and partial 2A sequences of HRV and HEV revealed a genus-like situation. Distribution of pairwise nucleotide identity values between these genera varied from 41 to 54 % in the VP1 coding region, similar to those between heterologous members of the two HRV species. Alignment of the deduced amino acid sequences revealed more fully conserved amino acid residues between HRV-B and polioviruses than between the two HRV species. In phylogenetic trees, where all HRVs and representatives from all HEV species were included, the two HRV species did not cluster together but behaved like members of the same genus as the HEVs. In conclusion, from a phylogenetic point of view, there are no good reasons to keep these two human picornavirus genera taxonomically separated.


Sign in / Sign up

Export Citation Format

Share Document