scholarly journals Phylogenetic analysis of human rhinovirus capsid protein VP1 and 2A protease coding sequences confirms shared genus-like relationships with human enteroviruses

2005 ◽  
Vol 86 (3) ◽  
pp. 697-706 ◽  
Author(s):  
Pia Laine ◽  
Carita Savolainen ◽  
Soile Blomqvist ◽  
Tapani Hovi

Phylogenetic analysis of the capsid protein VP1 coding sequences of all 101 human rhinovirus (HRV) prototype strains revealed two major genetic clusters, similar to that of the previously reported VP4/VP2 coding sequences, representing the established two species, Human rhinovirus A (HRV-A) and Human rhinovirus B (HRV-B). Pairwise nucleotide identities varied from 61 to 98 % within and from 46 to 55 % between the two HRV species. Interserotypic sequence identities in both HRV species were more variable than those within any Human enterovirus (HEV) species in the same family. This means that unequivocal serotype identification by VP1 sequence analysis used for HEV strains may not always be possible for HRV isolates. On the other hand, a comprehensive insight into the relationships between VP1 and partial 2A sequences of HRV and HEV revealed a genus-like situation. Distribution of pairwise nucleotide identity values between these genera varied from 41 to 54 % in the VP1 coding region, similar to those between heterologous members of the two HRV species. Alignment of the deduced amino acid sequences revealed more fully conserved amino acid residues between HRV-B and polioviruses than between the two HRV species. In phylogenetic trees, where all HRVs and representatives from all HEV species were included, the two HRV species did not cluster together but behaved like members of the same genus as the HEVs. In conclusion, from a phylogenetic point of view, there are no good reasons to keep these two human picornavirus genera taxonomically separated.

2003 ◽  
Vol 77 (16) ◽  
pp. 8973-8984 ◽  
Author(s):  
Betty Brown ◽  
M. Steven Oberste ◽  
Kaija Maher ◽  
Mark A. Pallansch

ABSTRACT The 65 human enterovirus serotypes are currently classified into five species: Poliovirus (3 serotypes), Human enterovirus A (HEV-A) (12 serotypes), HEV-B (37 serotypes), HEV-C (11 serotypes), and HEV-D (2 serotypes). Coxsackie A virus (CAV) serotypes 1, 11, 13, 15, 17, 18, 19, 20, 21, 22, and 24 constitute HEV-C. We have determined the complete genome sequences for the remaining nine HEV-C serotypes and compared them with the complete sequences of CAV21, CAV24, and the polioviruses. The viruses were most diverse in the capsid region (4 to 36% amino acid difference). A high degree of capsid sequence conservation (96% amino acid identity) suggests that CAV15 and CAV18 should be classified as strains of CAV11 and CAV13, respectively. In the 3CD region, CAV1, CAV19, and CAV22 differed from one another by only 1.2 to 1.4% and CAV11, CAV13, CAV17, CAV20, CAV21, CAV24, and the polioviruses differed from one another by only 1.2 to 3.6%. The two groups, however, differed from one another by 14.6 to 16.2%. The polioviruses as a group were monophyletic only in the capsid region. Only one group of serotypes (CAV1, CAV19, and CAV22) was consistently monophyletic in multiple genome regions. Incongruities among phylogenetic trees based on different genome regions strongly suggest that recombination has occurred between the polioviruses, CAV11, CAV13, CAV17, and CAV20. The close relationship among the polioviruses and CAV11, CAV13, CAV17, CAV20, CAV21, and CAV24 and the uniqueness of CAV1, CAV19, and CAV22 suggest that revisions should be made to the classification of these viruses.


2008 ◽  
Vol 53 (No. 10) ◽  
pp. 442-446 ◽  
Author(s):  
E. Michu

This review is a short introduction to phylogenetic analysis. Phylogenetic analysis allows comprehensive understanding of the origin and evolution of species. Generally, it is possible to construct the phylogenetic trees according to different features and characters (e.g. morphological and anatomical characters, RAPD patterns, FISH patterns, sequences of DNA/RNA and amino acid sequences). The DNA sequences are preferable for phylogenetic analyses of closely related species. On the other hand, the amino acid sequences are used for phylogenetic analyses of more distant relationships. The sequences can be analysed using many computer programs. The methods most often used for phylogenetic analyses are neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xia Wang ◽  
Georg F. Weber

The phylogenetic analysis of proteins conventionally relies on the evaluation of amino acid sequences or coding sequences. Individual amino acids have measurable features that allow the translation from strings of letters (amino acids or bases) into strings of numbers (physico-chemical properties). When the letters are converted to measurable properties, such numerical strings can be evaluated quantitatively with various tools of complex systems research. We build on our prior phylogenetic analysis of the cytokine Osteopontin to validate the quantitative approach toward the study of protein evolution. Phylogenetic trees constructed from the number strings differentiate among all sequences. In pairwise comparisons, autocorrelation, average mutual information and box counting dimension yield one number each for the overall relatedness between sequences. We also find that bivariate wavelet analysis distinguishes hypermutable regions from conserved regions of the protein. The investigation of protein evolution via quantitative study of the physico-chemical characteristics pertaining to the amino acid building blocks broadens the spectrum of applicable research tools, accounts for mutation as well as selection, gives assess to multiple vistas depending on the property evaluated, discriminates more accurately among sequences, and renders the analysis more quantitative than utilizing strings of letters as starting points.


2005 ◽  
Vol 86 (7) ◽  
pp. 2035-2045 ◽  
Author(s):  
Huai-Ying Zheng ◽  
Tomokazu Takasaka ◽  
Kazuyuki Noda ◽  
Akira Kanazawa ◽  
Hideo Mori ◽  
...  

JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML) in patients with decreased immune competence. To elucidate genetic changes in JCPyV associated with the pathogenesis of PML, multiple complete JCPyV DNA clones originating from the brains of three PML cases were established and sequenced. Although unique rearranged control regions occurred in all clones, a low level of nucleotide variation was also found in the coding region. In each case, a parental coding sequence was identified, from which variant coding sequences with nucleotide substitutions would have been generated. A comparison between the parental and variant coding sequences demonstrated that all 12 detected nucleotide substitutions gave rise to amino acid changes. Interestingly, seven of these changes were located in the surface loops of the major capsid protein (VP1). Finally, 16 reported VP1 sequences of PML-type JCPyV (i.e. derived from the brain or cerebrospinal fluid of PML patients) were compared with their genotypic prototypes, generated as consensus sequences of representative archetypal isolates belonging to the same genotypes; 13 VP1 proteins had amino acid changes in the surface loops. In contrast, VP1 proteins from isolates from the urine of immunocompetent and immunosuppressed patients rarely underwent mutations in the VP1 loops. The present findings suggest that PML-type JCPyV frequently undergoes amino acid substitutions in the VP1 loops. These polymorphisms should serve as a new marker for the identification of JCPyV isolates associated with PML. The biological significance of these mutations, however, remains unclear.


2006 ◽  
Vol 87 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Pia Laine ◽  
Soile Blomqvist ◽  
Carita Savolainen ◽  
Koen Andries ◽  
Tapani Hovi

An alignment was made of the deduced amino acid sequences of the entire capsid protein VP1 of all human rhinovirus (HRV) prototype strains to examine conserved motifs in the primary structure. A set of previously proposed crucially important amino acids in the footprints of the two known receptor molecules was not conserved in a receptor group-specific way. In contrast, VP1 and VP3 amino acids in the minor receptor-group strains corresponding to most of the predicted ICAM-1 footprint definitely differed from those of the ICAM-1-using major receptor-group strains. Previous antiviral-sensitivity classification showed an almost-complete agreement with the species classification and a fair correlation with amino acids aligning in the antiviral pocket. It was concluded that systematic alignment of sequences of related virus strains can be used to test hypotheses derived from molecular studies of individual model viruses and to generate ideas for future studies on virus structure and replication.


2018 ◽  
Vol 44 (1) ◽  
pp. 20
Author(s):  
Eloiza Teles Caldart ◽  
Helena Mata ◽  
Cláudio Wageck Canal ◽  
Ana Paula Ravazzolo

Background: Phylogenetic analyses are an essential part in the exploratory assessment of nucleic acid and amino acid sequences. Particularly in virology, they are able to delineate the evolution and epidemiology of disease etiologic agents and/or the evolutionary path of their hosts. The objective of this review is to help researchers who want to use phylogenetic analyses as a tool in virology and molecular epidemiology studies, presenting the most commonly used methodologies, describing the importance of the different techniques, their peculiar vocabulary and some examples of their use in virology.Review: This article starts presenting basic concepts of molecular epidemiology and molecular evolution, emphasizing their relevance in the context of viral infectious diseases. It presents a session on the vocabulary relevant to the subject, bringing readers to a minimum level of knowledge needed throughout this literature review. Within its main subject, the text explains what a molecular phylogenetic analysis is, starting from a multiple alignment of nucleotide or amino acid sequences. The different software used to perform multiple alignments may apply different algorithms. To build a phylogeny based on amino acid or nucleotide sequences it is necessary to produce a data matrix based on a model for nucleotide or amino acid replacement, also called evolutionary model. There are a number of evolutionary models available, varying in complexity according to the number of parameters (transition, transversion, GC content, nucleotide position in the codon, among others). Some papers presented herein provide techniques that can be used to choose evolutionary models. After the model is chosen, the next step is to opt for a phylogenetic reconstruction method that best fits the available data and the selected model. Here we present the most common reconstruction methods currently used, describing their principles, advantages and disadvantages. Distance methods, for example, are simpler and faster, however, they do not provide reliable estimations when the sequences are highly divergent. The accuracy of the analysis with probabilistic models (neighbour joining, maximum likelihood and bayesian inference) strongly depends on the adherence of the actual data to the chosen development model. Finally, we also explore topology confidence tests, especially the most used one, the bootstrap. To assist the reader, this review presents figures to explain specific situations discussed in the text and numerous examples of previously published scientific articles in virology that demonstrate the importance of the techniques discussed herein, as well as their judicious use.Conclusion: The DNA sequence is not only a record of phylogeny and divergence times, but also keeps signs of how the evolutionary process has shaped its history and also the elapsed time in the evolutionary process of the population. Analyses of genomic sequences by molecular phylogeny have demonstrated a broad spectrum of applications. It is important to note that for the different available data and different purposes of phylogenies, reconstruction methods and evolutionary models should be wisely chosen. This review provides theoretical basis for the choice of evolutionary models and phylogenetic reconstruction methods best suited to each situation. In addition, it presents examples of diverse applications of molecular phylogeny in virology.


1986 ◽  
Vol 6 (3) ◽  
pp. 849-858 ◽  
Author(s):  
C B Shoemaker ◽  
L D Mitsock

The gene for murine erythropoietin (EPO) was isolated from a mouse genomic library with a human EPO cDNA probe. Nucleotide sequence analysis permitted the identification of the murine EPO coding sequence and the prediction of the encoded amino acid sequence based on sequence conservation between the mouse and human EPO genes. Both the coding DNA and the amino acid sequences were 80% conserved between the two species. Transformation of COS-1 cells with a mammalian cell expression vector containing the murine EPO coding region resulted in secretion of murine EPO with biological activity on both murine and human erythroid progenitor cells. The transcription start site for the murine EPO gene in kidneys was determined. This permitted tentative identification of the transcription control region. The region included 140 base pairs upstream of the cap site which was over 90% conserved between the murine and human genes. Surprisingly, the first intron and much of the 5'- and 3'-untranslated sequences were also substantially conserved between the genes of the two species.


1980 ◽  
Vol 187 (1) ◽  
pp. 65-74 ◽  
Author(s):  
D Penny ◽  
M D Hendy ◽  
L R Foulds

We have recently reported a method to identify the shortest possible phylogenetic tree for a set of protein sequences [Foulds Hendy & Penny (1979) J. Mol. Evol. 13. 127–150; Foulds, Penny & Hendy (1979) J. Mol. Evol. 13, 151–166]. The present paper discusses issues that arise during the construction of minimal phylogenetic trees from protein-sequence data. The conversion of the data from amino acid sequences into nucleotide sequences is shown to be advantageous. A new variation of a method for constructing a minimal tree is presented. Our previous methods have involved first constructing a tree and then either proving that it is minimal or transforming it into a minimal tree. The approach presented in the present paper progressively builds up a tree, taxon by taxon. We illustrate this approach by using it to construct a minimal tree for ten mammalian haemoglobin alpha-chain sequences. Finally we define a measure of the complexity of the data and illustrate a method to derive a directed phylogenetic tree from the minimal tree.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Shinobu Tsuchiaka ◽  
Sayed Samim Rahpaya ◽  
Konosuke Otomaru ◽  
Hiroshi Aoki ◽  
Mai Kishimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document