scholarly journals Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery

2013 ◽  
Vol 41 (6) ◽  
pp. 3619-3634 ◽  
Author(s):  
Na Li ◽  
Xintian You ◽  
Tao Chen ◽  
Sebastian D. Mackowiak ◽  
Marc R. Friedländer ◽  
...  
Keyword(s):  
Science ◽  
2010 ◽  
Vol 328 (5986) ◽  
pp. 1694-1698 ◽  
Author(s):  
D. Cifuentes ◽  
H. Xue ◽  
D. W. Taylor ◽  
H. Patnode ◽  
Y. Mishima ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 408 ◽  
Author(s):  
Jing-Yao Yu ◽  
Zhan-Guo Zhang ◽  
Shi-Yu Huang ◽  
Xue Han ◽  
Xin-Yu Wang ◽  
...  

Soybeans are an important cash crop and are widely used as a source of vegetable protein and edible oil. MicroRNAs (miRNA) are endogenous small RNA that play an important regulatory role in the evolutionarily conserved system of gene expression. In this study, we selected four lines with extreme phenotypes, as well as high or low protein and oil content, from the chromosome segment substitution line (CSSL) constructed from suinong (SN14) and ZYD00006, and planted and sampled at three stages of grain development for small RNA sequencing and expression analysis. The sequencing results revealed the expression pattern of miRNA in the materials, and predicted miRNA-targeted regulatory genes, including 1967 pairs of corresponding relationships between known-miRNA and their target genes, as well as 597 pairs of corresponding relationships between novel-miRNA and their target genes. After screening and annotating genes that were targeted for regulation, five specific genes were identified to be differentially expressed during seed development and subsequently analyzed for their regulatory relationship with miRNAs. The expression pattern of the targeted gene was verified by Real-time Quantitative PCR (RT-qPCR). Our research provides more information about the miRNA regulatory network in soybeans and further identifies useful genes that regulate storage during soy grain development, providing a theoretical basis for the regulation of soybean quality traits.


2019 ◽  
Vol 20 (22) ◽  
pp. 5697 ◽  
Author(s):  
Michelle E. Pewarchuk ◽  
Mateus C. Barros-Filho ◽  
Brenda C. Minatel ◽  
David E. Cohn ◽  
Florian Guisier ◽  
...  

Recent studies have uncovered microRNAs (miRNAs) that have been overlooked in early genomic explorations, which show remarkable tissue- and context-specific expression. Here, we aim to identify and characterize previously unannotated miRNAs expressed in gastric adenocarcinoma (GA). Raw small RNA-sequencing data were analyzed using the miRMaster platform to predict and quantify previously unannotated miRNAs. A discovery cohort of 475 gastric samples (434 GA and 41 adjacent nonmalignant samples), collected by The Cancer Genome Atlas (TCGA), were evaluated. Candidate miRNAs were similarly assessed in an independent cohort of 25 gastric samples. We discovered 170 previously unannotated miRNA candidates expressed in gastric tissues. The expression of these novel miRNAs was highly specific to the gastric samples, 143 of which were significantly deregulated between tumor and nonmalignant contexts (p-adjusted < 0.05; fold change > 1.5). Multivariate survival analyses showed that the combined expression of one previously annotated miRNA and two novel miRNA candidates was significantly predictive of patient outcome. Further, the expression of these three miRNAs was able to stratify patients into three distinct prognostic groups (p = 0.00003). These novel miRNAs were also present in the independent cohort (43 sequences detected in both cohorts). Our findings uncover novel miRNA transcripts in gastric tissues that may have implications in the biology and management of gastric adenocarcinoma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Que Zhang ◽  
Rui Cai ◽  
Guorong Tang ◽  
Wanrong Zhang ◽  
Weijun Pang

Abstract Background Intramuscular fat (IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs (miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation. Results By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4 (SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6 (TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway. Conclusions MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.


Sign in / Sign up

Export Citation Format

Share Document