scholarly journals dearseq: a variance component score test for RNA-seq differential analysis that effectively controls the false discovery rate

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Marine Gauthier ◽  
Denis Agniel ◽  
Rodolphe Thiébaut ◽  
Boris P Hejblum

Abstract RNA-seq studies are growing in size and popularity. We provide evidence that the most commonly used methods for differential expression analysis (DEA) may yield too many false positive results in some situations. We present dearseq, a new method for DEA that controls the false discovery rate (FDR) without making any assumption about the true distribution of RNA-seq data. We show that dearseq controls the FDR while maintaining strong statistical power compared to the most popular methods. We demonstrate this behavior with mathematical proofs, simulations and a real data set from a study of tuberculosis, where our method produces fewer apparent false positives.

2019 ◽  
Author(s):  
Marine Gauthier ◽  
Denis Agniel ◽  
Rodolphe Thiébaut ◽  
Boris P. Hejblum

AbstractRNA-seq studies are growing in size and popularity. We provide evidence that the most commonly used methods for differential expression analysis (DEA) may yield too many false positive results in some situations. We presentdearseq, a new method for DEA which controls the FDR without making any assumption about the true distribution of RNA-seq data. We show thatdearseqcontrols the FDR while maintaining strong statistical power compared to the most popular methods. We demonstrate this behavior with mathematical proofs, simulations, and a real data set from a study of Tuberculosis, where our method produces fewer apparent false positives.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinyang Zhang ◽  
Shuai Chen ◽  
Jingwen Yang ◽  
Fangqing Zhao

AbstractDetection and quantification of circular RNAs (circRNAs) face several significant challenges, including high false discovery rate, uneven rRNA depletion and RNase R treatment efficiency, and underestimation of back-spliced junction reads. Here, we propose a novel algorithm, CIRIquant, for accurate circRNA quantification and differential expression analysis. By constructing pseudo-circular reference for re-alignment of RNA-seq reads and employing sophisticated statistical models to correct RNase R treatment biases, CIRIquant can provide more accurate expression values for circRNAs with significantly reduced false discovery rate. We further develop a one-stop differential expression analysis pipeline implementing two independent measures, which helps unveil the regulation of competitive splicing between circRNAs and their linear counterparts. We apply CIRIquant to RNA-seq datasets of hepatocellular carcinoma, and characterize two important groups of linear-circular switching and circular transcript usage switching events, which demonstrate the promising ability to explore extensive transcriptomic changes in liver tumorigenesis.


2019 ◽  
Author(s):  
Anqi Zhu ◽  
Avi Srivastava ◽  
Joseph G. Ibrahim ◽  
Rob Patro ◽  
Michael I. Love

AbstractA primary challenge in the analysis of RNA-seq data is to identify differentially expressed genes or transcripts while controlling for technical biases present in the observations. Ideally, a statistical testing procedure should incorporate information about the inherent uncertainty of the abundance estimates, whether at the gene or transcript level, that arise from quantification of abundance. Most popular methods for RNA-seq differential expression analysis fit a parametric model to the counts or scaled counts for each gene or transcript, and a subset of methods can incorporate information about the uncertainty of the counts. Previous work has shown that nonparametric models for RNA-seq differential expression may in some cases have better control of the false discovery rate, and adapt well to new data types without requiring reformulation of a parametric model. Existing nonparametric models do not take into account the inferential uncertainty of the observations, leading to an inflated false discovery rate, in particular at the transcript level. Here we propose a nonparametric model for differential expression analysis using inferential replicate counts, extending the existing SAMseq method to account for inferential uncertainty, batch effects, and sample pairing. We compare our method, “SAMseq With Inferential Samples Helps”, or Swish, with popular differential expression analysis methods. Swish has improved control of the false discovery rate, in particular for transcripts with high inferential uncertainty. We apply Swish to a singlecell RNA-seq dataset, assessing sensitivity to recover DE genes between sub-populations of cells, and compare its performance to the Wilcoxon rank sum test.


2019 ◽  
Vol 47 (18) ◽  
pp. e105-e105 ◽  
Author(s):  
Anqi Zhu ◽  
Avi Srivastava ◽  
Joseph G Ibrahim ◽  
Rob Patro ◽  
Michael I Love

Abstract A primary challenge in the analysis of RNA-seq data is to identify differentially expressed genes or transcripts while controlling for technical biases. Ideally, a statistical testing procedure should incorporate the inherent uncertainty of the abundance estimates arising from the quantification step. Most popular methods for RNA-seq differential expression analysis fit a parametric model to the counts for each gene or transcript, and a subset of methods can incorporate uncertainty. Previous work has shown that nonparametric models for RNA-seq differential expression may have better control of the false discovery rate, and adapt well to new data types without requiring reformulation of a parametric model. Existing nonparametric models do not take into account inferential uncertainty, leading to an inflated false discovery rate, in particular at the transcript level. We propose a nonparametric model for differential expression analysis using inferential replicate counts, extending the existing SAMseq method to account for inferential uncertainty. We compare our method, Swish, with popular differential expression analysis methods. Swish has improved control of the false discovery rate, in particular for transcripts with high inferential uncertainty. We apply Swish to a single-cell RNA-seq dataset, assessing differential expression between sub-populations of cells, and compare its performance to the Wilcoxon test.


2013 ◽  
Vol 9 ◽  
pp. EBO.S13099 ◽  
Author(s):  
Tae Young Yang ◽  
Seongmun Jeong

2006 ◽  
Vol 45 (9) ◽  
pp. 1181-1189 ◽  
Author(s):  
D. S. Wilks

Abstract The conventional approach to evaluating the joint statistical significance of multiple hypothesis tests (i.e., “field,” or “global,” significance) in meteorology and climatology is to count the number of individual (or “local”) tests yielding nominally significant results and then to judge the unusualness of this integer value in the context of the distribution of such counts that would occur if all local null hypotheses were true. The sensitivity (i.e., statistical power) of this approach is potentially compromised both by the discrete nature of the test statistic and by the fact that the approach ignores the confidence with which locally significant tests reject their null hypotheses. An alternative global test statistic that has neither of these problems is the minimum p value among all of the local tests. Evaluation of field significance using the minimum local p value as the global test statistic, which is also known as the Walker test, has strong connections to the joint evaluation of multiple tests in a way that controls the “false discovery rate” (FDR, or the expected fraction of local null hypothesis rejections that are incorrect). In particular, using the minimum local p value to evaluate field significance at a level αglobal is nearly equivalent to the slightly more powerful global test based on the FDR criterion. An additional advantage shared by Walker’s test and the FDR approach is that both are robust to spatial dependence within the field of tests. The FDR method not only provides a more broadly applicable and generally more powerful field significance test than the conventional counting procedure but also allows better identification of locations with significant differences, because fewer than αglobal × 100% (on average) of apparently significant local tests will have resulted from local null hypotheses that are true.


2018 ◽  
Vol 28 (8) ◽  
pp. 2418-2438
Author(s):  
Xi Shen ◽  
Chang-Xing Ma ◽  
Kam C Yuen ◽  
Guo-Liang Tian

Bilateral correlated data are often encountered in medical researches such as ophthalmologic (or otolaryngologic) studies, in which each unit contributes information from paired organs to the data analysis, and the measurements from such paired organs are generally highly correlated. Various statistical methods have been developed to tackle intra-class correlation on bilateral correlated data analysis. In practice, it is very important to adjust the effect of confounder on statistical inferences, since either ignoring the intra-class correlation or confounding effect may lead to biased results. In this article, we propose three approaches for testing common risk difference for stratified bilateral correlated data under the assumption of equal correlation. Five confidence intervals of common difference of two proportions are derived. The performance of the proposed test methods and confidence interval estimations is evaluated by Monte Carlo simulations. The simulation results show that the score test statistic outperforms other statistics in the sense that the former has robust type [Formula: see text] error rates with high powers. The score confidence interval induced from the score test statistic performs satisfactorily in terms of coverage probabilities with reasonable interval widths. A real data set from an otolaryngologic study is used to illustrate the proposed methodologies.


2020 ◽  
Author(s):  
Takayuki Osabe ◽  
Kentaro Shimizu ◽  
Koji Kadota

Abstract Background RNA-seq is a tool for measuring gene expression and is commonly used to identify differentially expressed genes (DEGs). Gene clustering is used to classify DEGs with similar expression patterns for the subsequent analyses of data from experiments such as time-courses or multi-group comparisons. However, gene clustering has rarely been used for analyzing simple two-group data or differential expression (DE). In this study, we report a model-based clustering algorithm, MBCluster.Seq, that can be implemented using an R package for DE analysis.Results The input data originally used by MBCluster.Seq is DEGs, and the proposed method (called MBCdeg) uses all genes for the analysis. The method uses posterior probabilities of genes assigned to a cluster displaying non-DEG pattern for overall gene ranking. We compared the performance of MBCdeg with conventional R packages such as edgeR, DESeq2, and TCC that are specialized for DE analysis using simulated and real data. Our results showed that MBCdeg outperformed other methods when the proportion of DEG was less than 50%. However, the DEG identification using MBCdeg was less consistent than with conventional methods. We compared the effects of different normalization algorithms using MBCdeg, and performed an analysis using MBCdeg in combination with a robust normalization algorithm (called DEGES) that was not implemented in MBCluster.Seq. The new analysis method showed greater stability than using the original MBCdeg with the default normalization algorithm.Conclusions MBCdeg with DEGES normalization can be used in the identification of DEGs when the PDEG is relatively low. As the method is based on gene clustering, the DE result includes information on which expression pattern the gene belongs to. The new method may be useful for the analysis of time-course and multi-group data, where the classification of expression patterns is often required.


2018 ◽  
Author(s):  
Uri Keich ◽  
Kaipo Tamura ◽  
William Stafford Noble

AbstractDecoy database search with target-decoy competition (TDC) provides an intuitive, easy-to-implement method for estimating the false discovery rate (FDR) associated with spectrum identifications from shotgun proteomics data. However, the procedure can yield different results for a fixed dataset analyzed with different decoy databases, and this decoy-induced variability is particularly problematic for smaller FDR thresholds, datasets or databases. In such cases, the nominal FDR might be 1% but the true proportion of false discoveries might be 10%. The averaged TDC protocol combats this problem by exploiting multiple independently shuffled decoy databases to provide an FDR estimate with reduced variability. We provide a tutorial introduction to aTDC, describe an improved variant of the protocol that offers increased statistical power, and discuss how to deploy aTDC in practice using the Crux software toolkit.


Sign in / Sign up

Export Citation Format

Share Document