scholarly journals P0678RENAL SUBCAPSULAR ADMINISTRATION OF ADIPOSE DERIVED MESENCHYMAL STEM CELLS PREVENTED THE PROGRESSION OF RENAL DAMAGE IN AN EXPERIMENTAL MODEL OF CKD

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Marina P Claro ◽  
Krislley R Pereira ◽  
Everidiene K V B Silva ◽  
Flavio Teles ◽  
Paulyana F Barbosa ◽  
...  

Abstract INTRODUCTION / AIMS Chronic kidney disease (CKD) is a progressive, debilitating condition of high lethality, which prevalence have been increasing considerably in recent decades. CKD can be triggered by many different factors, such as genetic predisposition, systemic hypertension, diabetes mellitus and autoimmune diseases. It is characterized by the gradual loss of renal function, leading to kidney failure and the need for renal replacement therapy for the maintenance of life. Regardless of the etiology of CKD, the establishment of local renal inflammation, with leucocyte recruitment, cell proliferation, extracellular matrix accumulation, glomerular and tubulointerstitial fibrosis, contribute significantly to its establishment and evolution. Due to its known pathophysiology, the primary aim when clinically treating CKD is to slow the progression of renal function loss and the advance of inflammation. However, until the present moment, there is no efficient pharmacological treatment to completely arrest the aggravation of renal inflammation and, specially, renal fibrosis. This motivates the scientific community to develop experimental research in order to test new therapeutic approaches to stunt renal fibrosis. In this context, experimental application of mesenchymal stem cells (mSC) as a treatment to control renal inflammation have been showing promising results in studies with animal models of CKD. The aim of the present study was to analyze the renoprotective effects of subcapsular application of Adipose Tissue-derived mSC (ASC), in rats submitted to 5/6 nephrectomy, after the establishment of the disease (15 days after CKD induction), in order to more closely resemble the clinical settings in humans. METHODS ASC were obtained from gonadal adipose tissue from healthy male Wistar rats. These cells were cultured until P4 when characterization by flow cytometry and in vitro differentiation were performed. Male Wistar rats underwent 5/6 nephrectomy and were followed for 15 days until the complete establishment of CKD (group CKD 15d). At this time, animals underwent a new surgery in which they received a subcapsular injection of 2x106 ASC diluted in 10 μL of sterile PBS (group CKD + ASC 30d), or only 10 μL of sterile PBS (group CKD 30d). Sham-operated rats, euthanized at day 15 (Sham 15d) and 30 (Sham 30d) were used as controls. Survival rate, body weight (BW), 24h urinary protein (24h UPE) and albumin (24h UAE) excretion serum creatinine (SCr) and blood urea nitrogen (BUN) concentration, percentage (GS%) and index (GSI) of glomerulosclerosis, tubulointerstitial fibrosis (INT%) and renal infiltration by macrophages (CD68) were studied at 15 and 30 days after 5/6 nephrectomy. Our results are presented as Mean ± SE. Differences among groups were analyzed by one-way ANOVA. RESULTS ASC injection significantly improved the survival rate of CKD + ASC 30d animals, compared to the observed in the untreated group. Moreover, ASC treatment markedly reduced protein and albumin urinary excretion, prevented the development of glomerulosclerosis, both the percentage of sclerotic glomeruli and the index of glomerular damage, numerically reduced interstitial fibrosis and significantly avoided renal inflammation by halting the progression of renal cortical macrophage infiltration. CONCLUSIONS According to our results, subcapsular ASC application promoted considerable renoprotection in the 5/6 renal ablation model, even after the complete establishment of severe CKD, suggesting that experimental therapy with these cells could be associated to the current pharmacological treatments employed to detain the progression of CKD. Figure

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Marina P Claro ◽  
Krislley R Pereira ◽  
Everidiene K V B Silva ◽  
Flavio Teles ◽  
Paulyana F Barbosa ◽  
...  

Abstract INTRODUCTION / AIMS Chronic kidney disease (CKD) is considered a public health problem with epidemic proportions worldwide. Overactivity of the renin-angiotensin-aldosterone system (RAAS), associated to the establishment of a chronic self-sustained renal inflammation, are the main factors which contribute to the progression of CKD, leading to tissue fibrosis and loss of function. Consequently, RAAS inhibitors, such as the AT-1 receptor antagonist, Losartan, are among the most currently employed therapeutic strategies to slow down CKD progression, although the renoprotection afforded by these drugs is not complete. The association of anti-inflammatory and immunosuppressive drugs to RAAS inhibition is limited to the treatment of specific nephropathies, and its safety is still not entirely known. In this context, experimental application of mesenchymal stem cells (mSC) as a treatment to control renal inflammation and fibrosis have been showing promising results in studies with animal models of CKD. The aim of the present study was to analyze the renoprotective effects of subcapsular application of adipose-tissue derived mSC (ASC), associated to Losartan treatment, in rats submitted to 5/6 nephrectomy, after the establishment of CKD. METHODS ASC were isolated from gonadal adipose tissue from male Wistar rats, cultured until P4 and characterized by flow cytometry and in vitro differentiation. Male Wistar rats underwent 5/6 nephrectomy and were followed for 15 days to confirm the establishment of the nephropathy (CKD 15d). After this period, animals underwent a new surgery in which they received a subcapsular injection of 10 μL of sterile PBS (vehicle), or 2x106 ASC diluted in 10 μL of sterile PBS. Part of these animals were than treated orally with 50 mg/kg/day of Losartan (LOS) for further 15 days (groups CKD + LOS 30d and CKD + LOS + ASC 30d). A group of animals that received only subcapsular vehicle were kept untreated for the same period (CKD 30d). Sham-operated rats, euthanized at days 15 (Sham 15d) and 30 (Sham 30d), were used as controls. Survival rate, body weight (BW), systolic blood pressure (BP), 24h urinary protein (24h UPE) and albumin (24h UAE) excretion, serum creatinine (SCr) and blood urea nitrogen (BUN) concentrations, percentage (GS%) and index (GSI) of glomerulosclerosis, percentage of tubulointerstitial fibrosis (INT%) and renal infiltration by macrophages (CD68) were assessed 15 and 30 days after 5/6 nephrectomy. The obtained results are presented as Mean ± SE. Differences among groups were analyzed by one-way ANOVA. RESULTS The renal subcapsular application of ASC after the establishment of severe CKD improved the renoprotection obtained with the classic treatment with LOS. The association of LOS + ASC significantly improved animal’s survival, reduced blood pressure, proteinuria and albuminuria, prevented the development of glomerular structural damage and interstitial fibrosis, and inhibited renal inflammation by normalizing renal macrophage infiltration in the CKD + LOS + ASC group. CONCLUSIONS Our preliminary results demonstrate that the application of ASC, associated to the oral administration of LOS exerted additional renoprotection in the 5/6 renal ablation model, compared to LOS monotherapy. These findings suggest that ASC therapy could be employed as a therapeutic additive together with the traditional RAAS blockade, to detain the progression of CKD.


2019 ◽  
Vol 70 (6) ◽  
pp. 1983-1987
Author(s):  
Cristian Trambitas ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Dorin Constantin Dorobantu ◽  
Flaviu Tabaran ◽  
...  

Large bone defects are a medical concern as these are often unable to heal spontaneously, based on the host bone repair mechanisms. In their treatment, bone tissue engineering techniques represent a promising approach by providing a guide for osseous regeneration. As bioactive glasses proved to have osteoconductive and osteoinductive properties, the aim of our study was to evaluate by histologic examination, the differences in the healing of critical-sized calvarial bone defects filled with bioactive glass combined with adipose-derived mesenchymal stem cells, compared to negative controls. We used 16 male Wistar rats subjected to a specific protocol based on which 2 calvarial bone defects were created in each animal, one was filled with Bon Alive S53P4 bioactive glass and adipose-derived stem cells and the other one was considered control. At intervals of one week during the following month, the animals were euthanized and the specimens from bone defects were histologically examined and compared. The results showed that this biomaterial was biocompatible and the first signs of osseous healing appeared in the third week. Bone Alive S53P4 bioactive glass could be an excellent bone substitute, reducing the need of bone grafts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2021 ◽  
Vol 22 (3) ◽  
pp. 1375
Author(s):  
María Carmen Carceller ◽  
María Isabel Guillén ◽  
María Luisa Gil ◽  
María José Alcaraz

Adipose tissue represents an abundant source of mesenchymal stem cells (MSC) for therapeutic purposes. Previous studies have demonstrated the anti-inflammatory potential of adipose tissue-derived MSC (ASC). Extracellular vesicles (EV) present in the conditioned medium (CM) have been shown to mediate the cytoprotective effects of human ASC secretome. Nevertheless, the role of EV in the anti-inflammatory effects of mouse-derived ASC is not known. The current study has investigated the influence of mouse-derived ASC CM and its fractions on the response of mouse-derived peritoneal macrophages against lipopolysaccharide (LPS). CM and its soluble fraction reduced the release of pro-inflammatory cytokines, adenosine triphosphate and nitric oxide in stimulated cells. They also enhanced the migration of neutrophils or monocytes, in the absence or presence of LPS, respectively, which is likely related to the presence of chemokines, and reduced the phagocytic response. The anti-inflammatory effect of CM may be dependent on the regulation of toll-like receptor 4 expression and nuclear factor-κB activation. Our results demonstrate the anti-inflammatory effects of mouse-derived ASC secretome in mouse-derived peritoneal macrophages stimulated with LPS and show that they are not mediated by EV.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Anirban Mandal ◽  
Ajeet Kumar Jha ◽  
Dew Biswas ◽  
Shyamal Kanti Guha

Abstract Background The study was conducted to assess the characterization, differentiation, and in vitro cell regeneration potential of canine mesenteric white adipose tissue-derived mesenchymal stem cells (AD-MSCs). The tissue was harvested through surgical incision and digested with collagenase to obtain a stromal vascular fraction. Mesenchymal stem cells isolated from the stromal vascular fraction were characterized through flow cytometry and reverse transcription-polymerase chain reaction. Assessment of cell viability, in vitro cell regeneration, and cell senescence were carried out through MTT assay, wound healing assay, and β-galactosidase assay, respectively. To ascertain the trilineage differentiation potential, MSCs were stained with alizarin red for osteocytes, alcian blue for chondrocytes, and oil o red for adipocytes. In addition, differentiated cells were characterized through a reverse transcription-polymerase chain reaction. Results We observed the elongated, spindle-shaped, and fibroblast-like appearance of cells after 72 h of initial culture. Flow cytometry results showed positive expression for CD44, CD90, and negative expression for CD45 surface markers. Population doubling time was found 18–24 h for up to the fourth passage and 30±0.5 h for the fifth passage. A wound-healing assay was used to determine cell migration rate which was found 136.9 ± 4.7 μm/h. We observed long-term in vitro cell proliferation resulted in MSC senescence. Furthermore, we also found that the isolated cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Conclusions Mesenteric white adipose tissue was found to be a potential source for isolation, characterization, and differentiation of MSCs. This study might be helpful for resolving the problems regarding the paucity of information concerning the basic biology of stem cells. The large-scale use of AD-MSCs might be a remedial measure in regenerative medicine.


2020 ◽  
Author(s):  
Elsa González‐Cubero ◽  
María Luisa González‐Fernández ◽  
Laura Gutiérrez‐Velasco ◽  
Eliezer Navarro‐Ramírez ◽  
Vega Villar‐Suárez

Sign in / Sign up

Export Citation Format

Share Document