P04.17 Antigen heterogeneity in glioblastoma cell lines, patient-derived cells, and patients’ glioblastoma tissue is an obstacle for CAR-T cell therapy development

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii21-ii22
Author(s):  
V Dufner ◽  
E Schulz ◽  
C Monoranu ◽  
M Hudecek ◽  
R Ernestus ◽  
...  

Abstract BACKGROUND Immunotherapy targeting surface antigens, e.g. CAR-T-cell therapy has become a promising therapeutic approach for glioblastoma (GBM) treatment. Antigen heterogeneity constitutes a major obstacle not only for preclinical in vitro studies but also for clinical translation. Here, we provide information about the surface expression of the eight in GBM CAR-T-cell therapy most targeted antigens (GD2, CSPG4, CD133, CD70, HER2, Il13Rα2, EGFRvIII and EphA2) by analyzing GBM cell lines (GCL), patient-derived cells (PDCL) and patients’ tumor tissue (PT) and comparing the expression profiles. MATERIAL AND METHODS We measured expression of the above-mentioned antigens in 7 GCL (GaMG, U87, U373, U343, U251, U138, DKMG), 7 PDCL and PT of 9 patients by flow cytometry (FACSCanto II). After evaluation with FlowJo software (TreeStar), we scored antigen expression (0–1.0: low expression, 1.1–2.0: medium expression, 2.1–3.0: high expression) and calculated the mean expression and range. RESULTS GD2 showed a medium expression in GCL (x̅=1.3) but was highly expressed in PDCL (x̅=2.6) and PT (x̅=2.4). In contrast, CSPG4 displayed low expression in GCL (x̅=0.3) and PT (x̅=0.4), but medium expression in PDCL (x̅=1.9). CD133, a stem cell marker, showed low expression in GCL (x̅=0.8) and PDCL (x̅=0.4), whereas the expression in PT was medium (x̅=1.4). Both CD70 and Il13Rα2 were weakly expressed in GCL, PDCL and PT (x̅=0.2, 0.4, 0.0 and 0.5, 0.6, 0.4, respectively). HER2 displayed medium expression in GCL (x̅=1.4) and PDCL (x̅=1.4) and low expression in PT (x̅=0.6). For EGFRvIII medium expression was detectable in all three entities (x̅=1.4, 1.1 and 1.1). EphA2 was mildly expressed in GCL (x̅=0.1), medium expressed in PT (x̅=2.0) and highly expressed in PDCL (x̅=2.6). Overall, there was high variability of antigen surface expression even within each of the groups. CONCLUSION GCL, PDCL and PT display heterogenic antigen surface expression with high variability within each group, thereby complicating clinical translation of in vitro results obtained using cell lines. This aspect should be taken into account in GBM target antigen research.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lena Andersch ◽  
Josefine Radke ◽  
Anika Klaus ◽  
Silke Schwiebert ◽  
Annika Winkler ◽  
...  

Abstract Background Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. Methods CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. Results All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. Conclusion Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 139 ◽  
Author(s):  
Jing Cui ◽  
Herui Wang ◽  
Rogelio Medina ◽  
Qi Zhang ◽  
Chen Xu ◽  
...  

Chimeric antigen receptor (CAR)-engineered T cells represent a promising modality for treating glioblastoma. Recently, we demonstrated that CAR-T cells targeting carbonic anhydrase IX (CAIX), a protein involved in HIF-1a hypoxic signaling, is a promising CAR-T cell target in an intracranial murine glioblastoma model. Anti-CAIX CAR-T cell therapy is limited by its suboptimal activation within the tumor microenvironment. LB-100, a small molecular inhibitor of protein phosphatase 2A (PP2A), has been shown to enhance T cell anti-tumor activity through activation of the mTOR signaling pathway. Herein, we investigated if a treatment strategy consisting of a combination of LB-100 and anti-CAIX CAR-T cell therapy produced a synergistic anti-tumor effect. Our studies demonstrate that LB-100 enhanced anti-CAIX CAR-T cell treatment efficacy in vitro and in vivo. Our findings demonstrate the role of LB-100 in augmenting the cytotoxic activity of anti-CAIX CAR-T cells and underscore the synergistic therapeutic potential of applying combination LB-100 and CAR-T Cell therapy to other solid tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yamin Jie ◽  
Guijun Liu ◽  
Lina Feng ◽  
Ying Li ◽  
Mingyan E ◽  
...  

In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small-cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. In this study, we constructed three different PTK7-specific CAR (PTK7-CAR1/2/3), each comprising a humanized PTK7-specific single-chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus-mediated transduction of human activated T cells accordingly, and we sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo. T cells transduced with all three PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression levels of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.


2020 ◽  
Author(s):  
Yamin Jie ◽  
Guijun Liu ◽  
Lina Feng ◽  
Ying Li ◽  
Mingyan E ◽  
...  

Abstract Background: In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. Methods: In this study, we constructed 3 different PTK7-specific CAR (PTK7-CAR1/2/3) each comprising a humanized PTK7-specific single chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus mediated transduction of human activated T cells accordingly, and sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo.Results: T cells transduced with all 3 PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression level of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Conclusion: Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.


Author(s):  
Jessica Wenthe ◽  
Sedigheh Naseri ◽  
Alireza Labani-Motlagh ◽  
Gunilla Enblad ◽  
Kristina I. Wikström ◽  
...  

AbstractPretreatment of B-cell lymphoma patients with immunostimulatory gene therapy using armed oncolytic viruses may prime tumor lesions for subsequent chimeric antigen receptor (CAR) T-cell therapy, thereby enhancing CAR T-cell functionality and possibly increasing response rates in patients. LOAd703 (delolimogene mupadenorepvec) is an oncolytic adenovirus (serotype 5/35) that encodes for the transgenes CD40L and 4-1BBL, which activate both antigen-presenting cells and T cells. Many adenoviruses failed to demonstrate efficacy in B-cell malignancies, but LOAd703 infect cells via CD46, which enables B cell infection. Herein, we investigated the therapeutic potential of LOAd703 in human B-cell lymphoma models, alone or in combination with CAR T-cell therapy. LOAd703 could infect and replicate in B-cell lymphoma cell lines (BC-3, Karpas422, Daudi, DG-75, U-698) and induced an overall enhanced immunogenic profile with upregulation of co-stimulatory molecules CD80, CD86, CD70, MHC molecules, death receptor Fas and adhesion molecule ICAM-1. Further, CAR T-cell functionality was boosted by stimulation with lymphoma cells infected with LOAd703. This was demonstrated by an augmented release of IFN-γ and granzyme B, increased expression of the degranulation marker CD107a, fewer PD-1 + TIM-3+ CAR T cells in vitro and enhanced lymphoma cell killing both in in vitro and in vivo xenograft models. In addition, LOAd703-infected lymphoma cells upregulated the secretion of several chemokines (CXCL10, CCL17, CCL22, CCL3, CCL4) essential for immune cell homing, leading to enhanced CAR T-cell migration. In conclusion, immunostimulatory LOAd703 therapy is an intriguing approach to induce anti-lymphoma immune responses and to improve CAR T-cell therapy in B-cell lymphoma.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2885-2885 ◽  
Author(s):  
Michael D. Jain ◽  
Hua Zhao ◽  
Reginald Atkins ◽  
Meghan A Menges ◽  
Crystal R Pope ◽  
...  

Introduction: Approximately 60% of Large B cell Lymphoma (LBCL) patients that receive CD19 CAR T cell therapy with axicabtagene ciloleucel (axi-cel) experience lymphoma progression (Locke et al. Lancet Oncol. 2019) and the likelihood of response to subsequent therapy is low (Spiegel, Dahiya et al. ASCO 2019). Target loss of CD19 is observed in less than a third of patients experiencing relapse. Alternative mechanisms of resistance to axi-cel are poorly understood. Lymphoma patients with elevated serum markers of systemic inflammation, such as ferritin and IL-6, have worse outcomes following axi-cel (Locke, Neelapu et al. Mol.Ther.2017; Faramand et al. ASH 2018). We hypothesized that suppressive monocytic myeloid derived suppressor cells (M-MDSCs), which are associated with worse chemotherapy outcomes in LBCL (Azzaoui et al. Blood 2016), and tumor driven inflammation may be present and responsible for decreased efficacy of axi-cel in LBCL. Methods: LBCL patients undergoing axi-cel treatment were enrolled onto prospective sample collection protocols. Patients were stratified for analysis into ongoing responders (complete response or partial response) or relapsed (progressive disease) after a minimum of 3 months follow-up (range 3 - 15 months). M-MDSCs, defined as a Lin-, CD11b+, CD33+, CD15-, CD14+, HLA-DRlow population, were sorted from leftover apheresis material after collection for axi-cel manufacture. M-MDSC ability to suppress proliferation of autologous T cells stimulated with CD3/CD28 coated beads was measured by 3H thymidine incorporation. Circulating peripheral blood M-MDSCs, quantified by % of live cells by flow cytometry, were measured at the time of apheresis and serially after axi-cel infusion until day 30. In vitro mouse experiments utilized a CD19-CD28 CAR and cytokine-induced bone marrow MDSCs (Thevenot et al. Immunity 2014). Cytokines were measured by ELISA and cytotoxicity against CD19 bearing cell lines used xCELLigence real-time cell analysis, as we have done previously (Li et al. JCI Insight 2018).Tumor biopsies were taken within 1 month prior to infusion of axi-cel. Limited gene expression profiling of tumor microenvironment (TME) genes used the Nanostring IO360 panel (770 genes). Analysis used nSolver to identify cell types, GSEA and differential gene expression between groups. Results: First, we demonstrated that M-MDSCs sorted from patient apheresis material suppressed the proliferation of autologous T cells (n=6). We next enumerated M-MDSCs in the peripheral blood (n = 32). M-MDSC numbers initially decreased after lymphodepleting chemotherapy but recovered to baseline levels by day +10. The level of M-MDSCs following CAR T cell therapy strongly correlated with pre-CAR T baseline levels (R = 0.871, p <0.0001), suggesting that the number of M-MDSCs present during CAR T cell expansion is dependent on factors already present before therapy began. M-MDSC levels were significantly higher in patients who subsequently relapsed, both at baseline (p= 0.01) and after axi-cel (p=0.04), as compared to patients with durable response. Mouse MDSCs were able to suppress CAR T cell IFN-gamma excretion (p<0.0001) and cytotoxicity (p<0.0001) in vitro. To evaluate the role of the TME we interrogated limited set gene expression profiling on patient (n=27) pre-axi-cel tumor biopsies. By cell type scoring, the macrophage gene score was significantly higher in patients who relapsed after CAR T therapy (p <0.001). By differential gene expression and gene set enrichment, patients who relapsed had a significantly higher expression (p <0.01) of multiple genes indicative of chronic interferon (IFN) signaling including higher levels of OAS2, OAS3, IFI6 and IFIT1, as well as the IFN-stimulated macrophage gene SIGLEC-1/CD169. Conclusions: Systemic inflammatory myeloid cytokines, circulating M-MDSCs in the blood and chronic IFN in the TME all associate with LBCL relapse after axi-cel CAR T cell therapy. Our observations support that CAR T cells can be suppressed by baseline patient and tumor-related factors and strategies to overcome these factors should be targeted to improve patient outcomes. MDJ and HZ contributed equally. Disclosures Jain: Kite/Gilead: Consultancy. Bachmeier:Kite/Gilead: Speakers Bureau. Chavez:Novartis: Membership on an entity's Board of Directors or advisory committees; Genentech: Speakers Bureau; Kite Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees; Janssen Pharmaceuticals, Inc.: Speakers Bureau. Shah:Jazz Pharmaceuticals: Research Funding; Incyte: Research Funding; Kite/Gilead: Honoraria; Celgene/Juno: Honoraria; Pharmacyclics: Honoraria; Adaptive Biotechnologies: Honoraria; Spectrum/Astrotech: Honoraria; Novartis: Honoraria; AstraZeneca: Honoraria. Mullinax:Iovance: Research Funding. Davila:Celgene: Research Funding; GlaxoSmithKline: Consultancy; Precision Biosciences: Consultancy; Novartis: Research Funding; Atara: Research Funding; Bellicum: Consultancy; Adaptive: Consultancy; Anixa: Consultancy. Locke:Kite: Other: Scientific Advisor; Novartis: Other: Scientific Advisor; Cellular BioMedicine Group Inc.: Consultancy.


2020 ◽  
Author(s):  
Hui-Shan Li ◽  
Nicole M. Wong ◽  
Elliot Tague ◽  
John T. Ngo ◽  
Ahmad S. Khalil ◽  
...  

SUMMARYChimeric antigen receptor (CAR) T cell immunotherapy has the potential to revolutionize cancer medicine. However, excessive CAR activation, lack of tumor-specific surface markers, and antigen escape have limited the safety and efficacy of CAR T cell therapy. A multi-antigen targeting CAR system that is regulated by safe, clinically-approved pharmaceutical agents is urgently needed, yet only a few simple systems have been developed, and even fewer have been evaluated for efficacy in vivo. Here, we present NASCAR (NS3 ASsociated CAR), a collection of induc-ible ON and OFF switch CAR circuits engineered with a NS3 protease domain deriving from the Hepatitis C Virus (HCV). We establish their ability to regulate CAR activity using multiple FDA-approved antiviral protease inhibitors, including grazoprevir (GZV), both in vitro and in a xenograft tumor model. In addition, we have engineered several dual-gated NASCAR circuits, consisting of an AND logic gate CAR, universal ON-OFF CAR, and a switchboard CAR. These engineered receptors enhance control over T cell activity and tumor-targeting specificity. Together, our com-prehensive set of multiplex drug-gated CAR circuits represent a dynamic, tunable, and clinically-ready set of modules for enhancing the safety of CAR T cell therapy.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1969 ◽  
Author(s):  
Cong He ◽  
Ying Zhou ◽  
Zhenlong Li ◽  
Muhammad Asad Farooq ◽  
Iqra Ajmal ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy is a promising approach in treating solid tumors but the therapeutic effect is limited. Prostate cancer is a typical solid malignancy with invasive property and a highly immunosuppressive microenvironment. Ligands for the NKG2D receptor are primarily expressed on many cancer cells, including prostate cancer. In this study, we utilized NKG2D-based CAR to treat prostate cancer, and improved the therapeutic effect by co-expression of IL-7. The results showed that NKG2D-CAR T cells performed significantly increased cytotoxicity against prostate cancer compared to non-transduced T cells in vitro and in vivo. Moreover, the introduction of the IL-7 gene into the NKG2D-CAR backbone enhanced the production of IL-7 in an antigen-dependent manner. NKG2DIL7-CAR T cells exhibited better antitumor efficacy at 16 h and 72 h in vitro, and inhibited tumor growth in xenograft models more effectively. In mechanism, enhanced proliferation and Bcl-2 expression in CD8+ T cells, decreased apoptosis and exhaustion, and increased less-differentiated cell phenotype may be the reasons for the improved persistence and survival of NKG2DIL7-CAR T cells. In conclusion, these findings demonstrated that NKG2D is a promising option for CAR T-cell therapy on prostate cancer, and IL-7 has enhanced effect on NKG2D-based CAR T-cell immunotherapy, providing a novel adoptive cell therapy for prostate cancer either alone or in combination with IL-7.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi266-vi266
Author(s):  
Prativa Sahoo ◽  
Xin Yang ◽  
Daniel Abler ◽  
Davide Maestrini ◽  
Vikram Adhikarla ◽  
...  

Abstract Chimeric antigen receptor (CAR) T-cell therapy is an emerging targeted immunotherapy which has shown success in liquid cancers such as leukemias. CAR T-cells are also being used for the treatment of solid tumors such as glioblastoma, which is a primary brain tumor. Ongoing phase I trials have been designed to evaluate CAR T-cell dosing, scheduling, and route of administration in order to understand and improve the efficacy of CAR T-cell therapy. A better understanding of factors leading to the success of CAR T-cell immunotherapy for solid tumors will be necessary to improve outcomes for patients with solid tumors and to advance the field of CAR T-cell immuno-oncology. Here we use mathematical model to explore factors in determining a successful response to CAR T-cell therapy: proliferation, persistence, and killing capacity of CAR T-cells. Using a novel in vitro experimental apparatus, we are able to measure the density of cancer cells over several days in 15 minute interval time resolution. This highly temporally resolved data provides a unique opportunity to confidently estimate parameters of the model and to provide insights into the dynamics of CAR T-cell proliferation, persistence, and killing capacity. Furthermore we explore the relationship between these factor with CAR T-cell dose level. We will show results from experiments using patient-derived cancer cell lines as well as cancer cells engineered to express specific levels of the target antigen (IL13Rα2) to quantitatively evaluate the roles of proliferation, persistence, and killing in cells with different levels of antigen expression. We will discuss the interpretation of the model parameters and demonstrate the clinical value of this analysis through an application of CAR T-cell treatment tailored to the dynamics of an individual patient’s cancer growth rate.


Sign in / Sign up

Export Citation Format

Share Document