P13.07 Cysteine induces glioblastoma cytotoxicity through mitochondrial reductive stress

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii33-ii34
Author(s):  
E Noch ◽  
L Palma ◽  
I Yim ◽  
D Barnett ◽  
B BHinder ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) remains a poorly treatable disease with high mortality. Tumor metabolism in GBM is a critical mechanism responsible for accelerated growth because of upregulation of glucose, amino acid, and fatty acid utilization. However, therapies targeting GBM metabolism, whether through the use of small-molecule compounds or dietary interventions to limit nutrient sources, have failed in clinical trials. Metabolic bypass is an important mechanism that is often overlooked in GBM trials, since many trials have focused instead on combining anti-metabolic therapy with cytotoxic treatments. The goal of this research is to use a multi-pronged treatment approach with targeted drug and dietary therapy to leverage metabolic susceptibilities in GBM. MATERIALS AND METHODS We first interrogated the TCGA database and a cancer metabolite database for alterations in glucose and amino acid signatures in GBM relative to other human cancers and relative to low-grade glioma. We identified the amino acid cysteine as contributing to a novel metabolic susceptibility pathway in GBM. To study the role of cysteine in GBM pathogenesis, we treated patient-derived GBM cells with a variety of FDA-approved cysteine-promoting compounds in vitro, including N-acetylcysteine (NAC). We measured cell proliferation, energy production, mitochondrial metabolism, and reactive oxygen species to study mechanisms of oxidoreductive stress. Results: From our TCGA and cancer metabolite database analyses, we found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers and that GBM exhibits high levels of cysteine-related metabolites compared to low-grade gliomas. Cysteine compounds, including NAC, reduce growth of GBM cells, which is exacerbated by glucose deprivation. This growth inhibition is associated with reduced mitochondrial metabolism, manifest by reduction in ATP generation, NADPH/NADP+ ratio, mitochondrial membrane potential, and oxygen consumption rate. Through measurement of mitochondrial hydrogen peroxide, we found that NAC-treated cells exhibit a paradoxical increase in mitochondrial hydrogen peroxide levels, likely due to inhibition of thioreductase and glutathione reductase systems. Through genetic and pharmacological studies, we found that induction of thioredoxin-2 rescues NAC-mediated cytotoxicity and that inhibition of thioreductase and glutathione reductase exacerbates mitochondrial toxicity and reductive stress. CONCLUSIONS We show that cysteine compounds reduce cell growth and induce mitochondrial toxicity in GBM through reductive stress. This metabolic phenotype is exacerbated by glucose deprivation. This pathway is targetable with FDA-approved cysteine-promoting compounds and could synergize with glucose-lowering treatments, including the ketogenic diet, for GBM.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii221-ii221
Author(s):  
Evan Noch ◽  
Laura Palma ◽  
Isaiah Yim ◽  
Bhavneet Binder ◽  
Elisa Benedetti ◽  
...  

Abstract Glioblastoma (GBM) remains a poorly treatable disease with high mortality. Tumor metabolism in GBM is a critical mechanism responsible for accelerated growth because of upregulation of glucose, amino acid, and fatty acid utilization. However, little is known about the metabolic alterations that are specific to GBM and that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated the TCGA and a cancer metabolite database for alterations in glucose and amino acid signatures in GBM relative to other human cancers and relative to low-grade glioma. From these analyses, we found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers and that GBM exhibits high levels of cysteine-related metabolites compared to low-grade gliomas. To study the role of cysteine in GBM pathogenesis, we treated patient-derived GBM cells with a variety of FDA-approved cyst(e)ine-promoting compounds in vitro, including N-acetylcysteine (NAC) and the cephalosporin antibiotic, Ceftriaxone (CTX), which induces cystine import through System Xc transporter upregulation. Cysteine-promoting compounds, including NAC and CTX, inhibit growth of GBM cells, which is exacerbated by glucose deprivation. This growth inhibition is associated with reduced mitochondrial metabolism, manifest by reduction in ATP, NADPH/NADP+ ratio, mitochondrial membrane potential, and oxygen consumption rate. Metabolic tracing experiments with 13C6-glucose demonstrate that L-serine is rapidly depleted in GBM cells upon treatment with NAC and CTX, and exogenous serine rescues NAC- and CTX-mediated cell growth inhibition. In addition, these compounds reduce GBM mitochondrial pyruvate transport. We show that cysteine-promoting compounds reduce cell growth and induce mitochondrial toxicity in GBM, which may be due to rapid serine depletion and reduced mitochondrial pyruvate transport. This metabolic phenotype is exacerbated by glucose deprivation. This pathway is targetable with FDA-approved cysteine-promoting compounds and could synergize with glucose-lowering treatments, including the ketogenic diet, for GBM.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i18-i18
Author(s):  
Evan Noch ◽  
Laura Palma ◽  
Isaiah Yim ◽  
Bhavneet Binder ◽  
Elisa Benedetti ◽  
...  

Abstract Glioblastoma (GBM) is a poorly treatable disease with high mortality. Tumor metabolism in GBM is a critical mechanism responsible for growth because of upregulation of glucose, amino acid, and fatty acid utilization. However, little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate metabolic signatures unique to GBM, we interrogated the TCGA and a cancer metabolite database for alterations in glucose and amino acid signatures in GBM relative to other human cancers and relative to low-grade glioma. From these analyses, we found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers and that GBM exhibits high levels of cysteine metabolites compared to low-grade gliomas. To study the role of cysteine in GBM pathogenesis, we treated patient-derived GBM cells with FDA-approved cyst(e)ine-promoting compounds in vitro, including N-acetylcysteine (NAC) and the cephalosporin antibiotic, Ceftriaxone (CTX), which induces cystine import through system Xc transporter upregulation. Cysteine-promoting compounds, including NAC and CTX, inhibit growth of GBM cells, which is exacerbated by glucose deprivation. This growth inhibition is associated with reduced mitochondrial metabolism, manifest by reduction in ATP, NADPH/NADP+ ratio, mitochondrial membrane potential, and oxygen consumption rate. Mechanistic experiments revealed that cysteine compounds induce a rapid increase in the rate of H2O2 production in isolated GBM mitochondria, an effect blocked by the H2O2 scavenger, catalase. Such findings are consistent with reductive stress, a ROS-producing process whereby excess mitochondrial reducing equivalents prevent electron transfer to oxidized electron acceptors, inducing O2 reduction to H2O2. We show that cysteine-promoting compounds reduce cell growth and induce rapid mitochondrial toxicity in GBM, which may be due to reductive stress. This pathway is targetable with FDA-approved cysteine-promoting compounds and could synergize with glucose-lowering treatments, including the ketogenic diet, for GBM.


2021 ◽  
Author(s):  
Evan K Noch ◽  
Laura Palma ◽  
Isaiah Yim ◽  
Daniel Barnett ◽  
Alexander Walsh ◽  
...  

SummaryGlucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved cysteine compound N-acetylcysteine (NAC) reduce GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


1991 ◽  
Vol 56 (4) ◽  
pp. 923-932
Author(s):  
Jana Stejskalová ◽  
Pavel Stopka ◽  
Zdeněk Pavlíček

The ESR spectra of peroxidase systems of methaemoglobin-ascorbic acid-hydrogen peroxide and methaemoglobin-haptoglobin complex-ascorbic acid-hydrogen peroxide have been measured in the acetate buffer of pH 4.5. For the system with methaemoglobin an asymmetrical signal with g ~ 2 has been observed which is interpreted as the perpendicular region of anisotropic spectrum of superoxide radical. On the other hand, for the system with methaemoglobin-haptoglobin complex the observed signal with g ~ 2 is symmetrical and is interpreted as a signal of delocalized electron. After realization of three repeatedly induced peroxidase processes the ESR signal of the perpendicular part of anisotropic spectrum of superoxide radical is distinctly diminished, whereas the signal of delocalized electron remains practically unchanged. An amino acid analysis of methaemoglobin along with results of the ESR measurements make it possible to derive a hypothesis about the role of haptoglobin in increasing of the peroxidase activity of methaemoglobin.


2000 ◽  
Vol 27 (3-5) ◽  
pp. 234-239 ◽  
Author(s):  
Isabel de la Mata ◽  
Fernando Ramón ◽  
Virginia Obregón ◽  
Ma Pilar Castillón ◽  
Carmen Acebal

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Anja Smits ◽  
Brigitta G. Baumert

The clinical management of adults with low-grade gliomas (LGGs) remains a challenge. There is no curative treatment, and management of individual patients is a matter of deciding optimal timing as well as right treatment modality. In addition to conventional imaging techniques, positron emission tomography (PET) with amino acid tracers can facilitate diagnostic and therapeutic procedures. In this paper, the clinical applications of PET with amino acid tracers 11C-methyl-L-methionine (MET) and 18F-fluoro-ethyl-L-tyrosine (FET) for patients with LGG are summarized. We also discuss the value of PET for the long-term followup of this patient group. Monitoring metabolic activity by PET in individual patients during course of disease will provide insight in the biological behavior and evolution of these tumors. As such, spatial changes in tumor activity over time, including shifts of hot-spot regions within the tumor, may reflect intratumoral heterogeneity and correlate to clinical parameters.


1995 ◽  
Vol 17 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Jon Berg-Johnsen ◽  
Tor υ Crsndahl ◽  
Iver A. Langmoen ◽  
Tor S. Haugstad ◽  
Elisabeth Hegstad

1962 ◽  
Vol 40 (1) ◽  
pp. 459-469 ◽  
Author(s):  
P. H. Jellinck ◽  
Louise Irwin

Aerobic incubation of estrone-16-C14with peroxidase in the presence of serum albumin and other proteins resulted in the formation of water-soluble, ether-insoluble metabolites in high percentage yields. Similar products were formed when protein was replaced by cysteine or tryptophan but none of the other amino acids tested had any effect. The evidence points to an initial generation of hydrogen peroxide from these nitrogenous compounds by the enzyme acting as an aerobic oxidase, and the subsequent peroxidation of estrone to highly reactive products. These then combine with the protein or amino acid or else undergo alternative reactions. A strong chemical bond is formed with albumin and attempts to release the estrone metabolites from it were unsuccessful. Uterine homogenates from estrogen-treated rats showing high DPNH oxidase activity contained no "peroxidase" as measured by the formation of water-soluble products from estrone in the presence of protein.


Sign in / Sign up

Export Citation Format

Share Document