scholarly journals DDRE-29. EGFR INHIBITION DOWNREGULATES MGMT AND SENSITIZES GBM CELLS TO TMZ

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi80-vi80
Author(s):  
Amyn Habib ◽  
Jann Sarkaria ◽  
Ke Gong ◽  
Gao Guo

Abstract Glioblastoma (GBM) is a highly malignant type of adult brain tumor with a poor prognosis. Temozolomide (TMZ), a DNA alkylating agent, has been widely used as an effective first-line chemotherapeutic agent for the treatment of GBM patients. The efficacy of TMZ in GBM depends on the absence of the DNA repair protein MGMT which reverses the DNA damage induced by TMZ. The MGMT promoter is hypermethylated in about 45% of GBMs, resulting in lack of MGMT expression and increased responsiveness to TMZ. TMZ is less effective in MGMT unmethylated GBMs. We propose that EGFR inhibition downregulates MGMT and sensitizes glioma cells to TMZ and a combination of pretreatment with erlotinib followed by TMZ could be a useful therapeutic approach in MGMT expressing GBMs. As our experimental model, we used multiple MGMT unmethylated lines from the Mayo Clinic patient derived xenografts (PDXs) panel. Our data demonstrate that exposure of cells to erlotinib for 48h results in downregulation of MGMT at the mRNA and protein level. Additionally, EGFR inhibition activates the AP-1 transcription factor, and overexpression of AP-1 components Fos and Jun results in decreased MGMT expression in TMZ resistant PDXs, suggesting that AP-1 acts as a transcriptional repressor of MGMT. We further identified that the mice implanted with TMZ resistant PDXs pretreated with afatinib followed by TMZ treatment survived longer compared to those treated with TMZ alone. Thus, the use of EGFR inhibition may enhance the sensitivity of MGMT unmethylated GBMs to TMZ.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii67-ii67
Author(s):  
Gao Guo ◽  
Ke Gong ◽  
Jann Sarkaria ◽  
Amyn Habib

Abstract Glioblastoma (GBM) is a highly malignant type of adult brain tumor with a poor prognosis. Temozolomide (TMZ), a DNA alkylating agent, has been widely used as an effective first-line chemotherapeutic agent for the treatment of GBM patients. The efficacy of TMZ in GBM depends on the absence of the DNA repair protein MGMT which reverses the DNA damage induced by TMZ. The MGMT promoter is hypermethylated in about 45% of GBMs, resulting in lack of MGMT expression and increased responsiveness to TMZ. TMZ is less effective in MGMT unmethylated GBMs. We propose that EGFR inhibition downregulates MGMT and sensitizes glioma cells to TMZ and a combination of pretreatment with erlotinib followed by TMZ could be a useful therapeutic approach in MGMT expressing GBMs. As our experimental model we used multiple MGMT unmethylated lines from the Mayo Clinic patient derived xenografts (PDXs) panel. Our data demonstrate that exposure of cells to EGFR tyrosine kinase inhibitor erlotinib for 48h results in downregulation of MGMT at the mRNA and protein level. Additionally, EGFR inhibition activates the AP-1 transcription factor and overexpression of AP-1 components Fos and Jun results in decreased MGMT expression in TMZ resistant PDXs, suggesting that AP-1 acts as a transcriptional repressor of MGMT. We further identified that the mice implanted with TMZ resistant PDXs pretreated with afatinib followed by TMZ treatment survived longer compared to those treated with TMZ alone. Thus, the use of EGFR inhibition may enhance the sensitivity of MGMT unmethylated GBMs to TMZ.


2013 ◽  
Vol 21 (5) ◽  
pp. 416-421 ◽  
Author(s):  
Camila Santos Pereira ◽  
Marcos Vinicius Macedo de Oliveira ◽  
Lucas Oliveira Barros ◽  
Gabriela Alencar Bandeira ◽  
Sergio Henrique Sousa Santos ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi71-vi71
Author(s):  
Gao Guo ◽  
Ke Gong ◽  
Jann Sarkaria ◽  
Amyn Habib

Abstract EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition is not effective in treating this tumor. EGFR inhibition may fail because EGFR is not a driver of the malignant phenotype in GBM, or because adaptive compensatory mechanisms are triggered by EGFR inhibition that prevent cell death from a loss of EGFR signaling. We have recently identified a TNFα-JNK-Axl-ERK signaling axis that mediates primary resistance to EGFR inhibition in GBM. Temozolomide (TMZ) is the most effective chemotherapy in GBM, although it has only a modest effect on overall survival. The efficacy of TMZ depends on the absence of the DNA repair protein O6-alkylguanine DNA alkyltransferase (MGMT) which reverses the DNA damage induced by TMZ. The MGMT promoter is hypermethylated in about 45% of GBMs, resulting in lack of MGMT expression. TMZ is less effective in MGMT unmethylated GBMs. Moreover, even initially responsive tumors develop a secondary resistance to TMZ. No treatment is effective in recurrent TMZ-resistant GBM. In this study, we compare the efficacy of temozolomide versus EGFR plus TNF inhibition in an orthotopic model of GBM. We find that efficacy of the two treatments is similar in MGMT-methylated GBMs. However, in MGMT-unmethylated GBMs, a combination of EGFR plus TNF inhibition is more effective. We demonstrate that the two treatment approaches target distinct and non-overlapping pathways. Furthermore, and importantly, EGFR plus TNF inhibition remains effective in TMZ-resistant recurrent GBMs and in GBMs rendered experimentally resistant to TMZ. Since the EGFR is expressed in the majority of GBMs, EGFR inhibition combined with a blunting of the accompanying TNF-driven adaptive response could be a broadly applicable and viable therapeutic approach in primary GBMs with MGMT unmethylation and in recurrent GBMs.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1038 ◽  
Author(s):  
Manisha Jalan ◽  
Kyrie S. Olsen ◽  
Simon N. Powell

The maintenance of genome integrity is critical for cell survival. Homologous recombination (HR) is considered the major error-free repair pathway in combatting endogenously generated double-stranded lesions in DNA. Nevertheless, a number of alternative repair pathways have been described as protectors of genome stability, especially in HR-deficient cells. One of the factors that appears to have a role in many of these pathways is human RAD52, a DNA repair protein that was previously considered to be dispensable due to a lack of an observable phenotype in knock-out mice. In later studies, RAD52 deficiency has been shown to be synthetically lethal with defects in BRCA genes, making RAD52 an attractive therapeutic target, particularly in the context of BRCA-deficient tumors.


2005 ◽  
Vol 37 (9) ◽  
pp. 958-963 ◽  
Author(s):  
Amom Ruhikanta Meetei ◽  
Annette L Medhurst ◽  
Chen Ling ◽  
Yutong Xue ◽  
Thiyam Ramsing Singh ◽  
...  

2016 ◽  
Vol 55 (8) ◽  
pp. 2911-2915 ◽  
Author(s):  
Chao Wang ◽  
Daniel Abegg ◽  
Dominic G. Hoch ◽  
Alexander Adibekian

Sign in / Sign up

Export Citation Format

Share Document