SURG-05. Α5Β1 INTEGRIN TARGETING LIPOSOME DELIVERY OF MIR-603 SUPPRESSED GLIOBLASTOMA STEM CELL STATE AND ENHANCED RADIATION SENSITIVITY

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi195-vi196
Author(s):  
Ahmed Shabana ◽  
Beibei Xu ◽  
Zachary Shneiderman ◽  
Jun Ma ◽  
efrosini kokkoli ◽  
...  

Abstract INTRODUCTION Despite the potential for clinical efficacy, therapeutic delivery of microRNAs (miRNA) remains a major translational barrier. Here, we explore a surgery mediated polyethylenimine (PEI)/liposome-based strategy for the delivery of miR-603, a master regulatory miRNA that suppresses glioblastoma stem cell state by simultaneous down-regulation of insulin-like growth factor 1 (IGF1) and IGF1 receptor (IGF1R). METHODS miR-603 was complexed with PEI, a cationic polymer designed to facilitate miRNA from the endolysosomal compartment. The miR-603/PEI complex was encapsulated into liposomes decorated with polyethylene glycol (PEG) and PR_b, a fibronectin-mimetic peptide that specifically targets the α5β1 integrin that is overexpressed in glioblastoma. RESULTS Patient-derived glioblastoma cells internalized PR_b coated liposomes but not the non-coated liposomes. The internalization of PR_b liposomes encapsulating miR-603/PEI was associated with orders of magnitude increase in intra-cellular miR-603 levels and decreased IGF1 and IGF1R mRNA/protein levels. Moreover, treatment of glioblastoma cells with the PR_b liposomes encapsulating miR-603/PEI showed altered morphology and decreased expression of stem cell marker, suggesting the treated cells have exited the cancer stem cell state. Finally, treatment of the PR_b liposomes encapsulating miR-603/PEI sensitized glioblastoma cells to ionizing radiation (IR) in patient-derived glioblastoma cells. These results were not observed in liposomes missing the PR_b peptide, PEI, or miR-603. CONCLUSION These results suggest that intra-tumoral injection of PR_b functionalized PEGylated liposomes encapsulating miR-603/PEI complexes hold promise as a strategy for glioblastomas therapy. A first-in-human trial is currently underway to test this strategy.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1115
Author(s):  
Ahmed M. Shabana ◽  
Beibei Xu ◽  
Zachary Schneiderman ◽  
Jun Ma ◽  
Clark C. Chen ◽  
...  

Despite potential for clinical efficacy, therapeutic delivery of microRNAs (miRNA) remains a major translational barrier. Here, we explore a strategy for miRNA delivery in the treatment of glioblastoma, the most common form of adult brain cancer, that involves complexation of miRNA with polyethylenimine (PEI) and encapsulation in targeted liposomes. miRNA 603 (miR-603) is a master regulatory miRNA that suppresses glioblastoma radiation resistance through down-regulation of insulin-like growth factor 1 (IGF1) signaling. miR-603 was complexed with PEI, a cationic polymer, and encapsulated into liposomes decorated with polyethylene glycol (PEG) and PR_b, a fibronectin-mimetic peptide that specifically targets the α5β1 integrin that is overexpressed in glioblastomas. Cultured patient-derived glioblastoma cells internalized PR_b-functionalized liposomes but not the non-targeted liposomes. The integrin targeting and complexation of the miRNA with PEI were associated with a 22-fold increase in intracellular miR-603 levels, and corresponding decreases in IGF1 and IGF1 receptor (IGF1R) mRNA expression. Moreover, treatment of glioblastoma cells with the PR_b liposomes encapsulating miR-603/PEI sensitized the cells to ionizing radiation (IR), a standard of care treatment for glioblastomas. These results suggest that PR_b-functionalized PEGylated liposomes encapsulating miR-603/PEI complexes hold promise as a therapeutic platform for glioblastomas.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
O Rominiyi ◽  
A Vanderlinden ◽  
K Myers ◽  
N Gomez-Roman ◽  
D Dar ◽  
...  

Abstract Introduction Glioblastoma is the most common cancer arising within the brain. Despite surgery, followed by DNA-damaging chemoradiotherapy, average survival remains between 12-15 months. Unacceptable survival rates underline the need to develop preclinical research models which recapitulate features underpinning therapeutic resistance in patients, such as intratumoural heterogeneity and treatment resistant glioblastoma stem cell (GSC) subpopulations which demonstrate elevated DNA damage response (DDR) activity. Method Tumour specimens from patients were used to generate 2D and 3D scaffold-based GSC models, with a range of preclinical survival and molecular assays used to interrogate cancer biology and assess therapeutic responses. Result We have developed a ‘living biobank’ of 20+ ex-vivo GSC models which reflect key clinicopathological diversity. These models include residual disease models based on careful macrodissection of rare en-blocpartial lobectomy specimens to liberate parallel GSC lines from the tumour core and adjacent infiltrated brain, to represent cells typically left behind after surgery. Therapeutic strategies targeting fundamental DDR processes demonstrate preclinical efficacy, for example dual inhibition of ATR and the FA DNA damage repair pathways elicits profound radiosensitisation (sensitiser enhancement ratio of 3.23 (3.03-3.49, 95%-CI)) with evidence of delayed DNA damage repair on single-cell gel electrophoresis. Finally, characterisation of our surgically-relevant resected and residual models reveals numerous divergent properties including elevated stem cell marker expression in residual models (p=0.0021), which may partially explain treatment resistance in disease left behind after surgery. Conclusion Our living biobank represents a useful resource for preclinical glioblastoma research and demonstrates the value of partnership between surgeons and laboratory-based scientists. Take-home message Our living biobank represents a useful resource for preclinical glioblastoma research and demonstrates the value of partnership between surgeons and laboratory-based scientists.


Stem Cells ◽  
2013 ◽  
Vol 31 (5) ◽  
pp. 918-927 ◽  
Author(s):  
Kuo-Hsuan Chang ◽  
Meng Li

Blood ◽  
2021 ◽  
Author(s):  
Bernhard Lehnertz ◽  
Jalila Chagraoui ◽  
Tara MacRae ◽  
Elisa Tomellini ◽  
Sophie Corneau ◽  
...  

Hematopoietic stem cells (HSCs) sustain blood cell homeostasis throughout life and can regenerate all blood lineages following transplantation. Despite this clear functional definition, highly enriched isolation of human HSCs can currently only be achieved through combinatorial assessment of multiple surface antigens. While several transgenic HSC reporter mouse strains have been described, no analogous approach to prospectively isolate human HSCs has been reported. To identify genes with the most selective expression in human HSCs, we profiled population- and single-cell transcriptomes of un-expanded and ex vivo cultured cord blood-derived HSPCs as well as peripheral blood, adult bone marrow, and fetal liver. Based on these analyses, we propose the master transcription factor HLF (Hepatic Leukemia Factor) as one of the most specific HSC marker genes. To directly track its expression in human hematopoietic cells, we developed a genomic HLF reporter strategy, capable of selectively labeling the most immature blood cells based on a single engineered parameter. Most importantly, HLF-expressing cells comprise all of the stem cell activity in culture and in vivo during serial transplantation. Taken together, these results experimentally establish HLF as a defining gene of the human hematopoietic stem cell state and outline a new approach to continuously mark these cells with high fidelity.


2018 ◽  
Vol 32 (23-24) ◽  
pp. 1550-1561 ◽  
Author(s):  
Hideyuki Komori ◽  
Krista L. Golden ◽  
Taeko Kobayashi ◽  
Ryoichiro Kageyama ◽  
Cheng-Yu Lee

2016 ◽  
Vol 150 (4) ◽  
pp. S170
Author(s):  
Adam D. Gracz ◽  
Daniel C. Trotier ◽  
Matthew J. Fordham ◽  
Scott Magness

2020 ◽  
Vol 27 (4) ◽  
pp. 590-604.e9 ◽  
Author(s):  
Priscilla Cheung ◽  
Jordi Xiol ◽  
Michael T. Dill ◽  
Wei-Chien Yuan ◽  
Riccardo Panero ◽  
...  

2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi233-vi233
Author(s):  
Christine Lee ◽  
Yunku Yeu ◽  
Ulf-peter Guenther ◽  
Tae Hyun Hwang ◽  
Eckhard Jankowsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document