Clinical utility of targeted next generation sequencing assay in IDH-wildtype glioblastoma for therapy decision-making

2021 ◽  
Author(s):  
Mary Jane Lim-Fat ◽  
Gilbert C Youssef ◽  
Mehdi Touat ◽  
J Bryan Iorgulescu ◽  
Sydney Whorral ◽  
...  

Abstract BACKGROUND Targeted gene NGS testing is available through many academic institutions and commercial entities and is increasingly incorporated in practice guidelines for glioblastoma (GBM). This single-center retrospective study aimed to evaluate the clinical utility of incorporating NGS results in the management of GBM patients at a clinical trials-focused academic center. METHODS We identified 1,011 consecutive adult patients with pathologically confirmed GBM (IDHwt or IDHmut) who had somatic tumor sequencing (Oncopanel, ~500 cancer gene panel) at DFCI from 2013-2019. Clinical records of all IDHwt GBM patients were reviewed to capture clinical trial enrollment and off-label targeted therapy use based on NGS results. RESULTS Of the 557 IDHwt GBM patients with sequencing, 182 entered clinical trials at diagnosis (32.7%) and 213 (38.2%) entered after recurrence. Sequencing results for 130 patients (23.3%) were utilized for clinical trial enrollment for either targeted therapy indications (6.9 % upfront and 27.7% at recurrent clinical trials and 3.1% for off-label targeted therapy) or exploratory studies (55.4% upfront and 6.9% recurrent clinical trials). Median overall survival was 20.1 months with no survival difference seen between patients enrolled in clinical trials compared to those who were not, in a post hoc analysis. CONCLUSIONS While NGS testing has become essential for improved molecular diagnostics, our study illustrates that targeted gene panels remain underutilized for selecting therapy in GBM-IDHwt. Targeted therapy and clinical trial design remain to be improved to help leverage the potential of NGS in clinical care.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 533-533
Author(s):  
Aditya Bardia ◽  
Steven J. Isakoff ◽  
Dejan Juric ◽  
Darrell R. Borger ◽  
Dora Dias-Santagata ◽  
...  

533 Background: Major barriers to enrollment in therapeutic clinical trials (<5% in United States) include low response rate in phase 1/2 trials and low enthusiasm among oncologists. Stratified clinical trial enrollment based on molecular profiling of tumors represents a potential paradigm shift in drug development. Here we assess the clinical utility of tumor genotyping for identification of oncogenic driver mutations and enrollment in therapeutic clinical trials for patients with MBC. Methods: A robust, high-throughput tumor genotyping assay (Snapshot), was developed at our institution to assess for presence of potentially actionable oncogenic driver mutations (15 genes, 130 mutations) using DNA derived from formalin-fixed, paraffin-embedded (FFPE) tissue. The tumor genotyping assay was ordered by oncologists in clinic for patients with MBC. Relevant clinical information was gathered from chart reviews. Descriptive statistics were used for analysis. Results: From 2009-2012, 347 breast tumors were prospectively genotyped in the study population (median age = 50, range 27-90). PIK3CA mutation (23.3%) was the most common mutation detected overall, albeit at varying frequency in tumor subtypes: HR+ (29.1%, N= 210), HER-2+ (21.5%, N = 65), TN (8.3%, N = 72). Unanticipated mutations in KRAS, BRAF, IDH, and HER-2 were also discovered. Clinical genotyping helped identify breast origin for carcinomas of unknown primary and revealed changes in mutation profile in metastatic tumors from primary tumors. Enrollment in clinical trials for MBC almost quadrupled from 2005-2008 to 2009-2012, with 35.5% of patients undergoing tumor genotype testing enrolling in trials, particularly phase-1 genotype-directed targeted therapy, such as PI3K inhibitors, Akt inhibitors, and combined PI3K/MEK inhibitors. Conclusions: Routine tumor genotyping can be successfully incorporated into clinical practice to significantly enhance therapeutic clinical trial enrollment and potentially accelerate development of genotype-directed targeted therapies for MBC.


2020 ◽  
Author(s):  
Marcello De Angelis ◽  
Luigi Lavorgna ◽  
Antonio Carotenuto ◽  
Martina Petruzzo ◽  
Roberta Lanzillo ◽  
...  

BACKGROUND Clinical trials in multiple sclerosis (MS) have leveraged the use of digital technology to overcome limitations in treatment and disease monitoring. OBJECTIVE To review the use of digital technology in concluded and ongoing MS clinical trials. METHODS In March 2020, we searched for “multiple sclerosis” and “trial” on pubmed.gov and clinicaltrials.gov using “app”, “digital”, “electronic”, “internet” and “mobile” as additional search words, separately. Overall, we included thirty-five studies. RESULTS Digital technology is part of clinical trial interventions to deliver psychotherapy and motor rehabilitation, with exergames, e-training, and robot-assisted exercises. Also, digital technology has become increasingly used to standardise previously existing outcome measures, with automatic acquisitions, reduced inconsistencies, and improved detection of symptoms. Some trials have been developing new patient-centred outcome measures for the detection of symptoms and of treatment side effects and adherence. CONCLUSIONS We will discuss how digital technology has been changing MS clinical trial design, and possible future directions for MS and neurology research.


2019 ◽  
pp. 1-10 ◽  
Author(s):  
Neha M. Jain ◽  
Alison Culley ◽  
Teresa Knoop ◽  
Christine Micheel ◽  
Travis Osterman ◽  
...  

In this work, we present a conceptual framework to support clinical trial optimization and enrollment workflows and review the current state, limitations, and future trends in this space. This framework includes knowledge representation of clinical trials, clinical trial optimization, clinical trial design, enrollment workflows for prospective clinical trial matching, waitlist management, and, finally, evaluation strategies for assessing improvement.


2021 ◽  
Vol 39 (28_suppl) ◽  
pp. 128-128
Author(s):  
Ahmed Megahed ◽  
Gary L Buchschacher ◽  
Ngoc J. Ho ◽  
Reina Haque ◽  
Robert Michael Cooper

128 Background: Sparse data exists on the diversity clinical trial enrollment in community settings. This information is important to ensure equity of care and generalizability of results. Methods: We conducted a retrospective cohort study of members of an integrated healthcare system diagnosed with invasive malignancies (excluding non-melanoma skin cancers) between 2013-2017 to examine demographics of the oncology population compared to those who enrolled in a clinical trial. Logistic regression was used to assess correlates of clinical trial participation, comparing general and screened samples to enrolled sample. Odds ratios were adjusted for gender, geocoded median household income, cancer type, and stage. Results: Of the 84,977 patients with a cancer diagnosis, N = 2606 were screened for clinical trial participation and consented, and of those N = 1372 enrolled. The percent of Latinx (25.8% vs 24.0%; OR 0.9? CI 0.72-1.05) and African American/Black (10.9% vs 11.1%; OR 0.92 CI 0.75-1.11) clinical trial participation mirrored that of the general oncology population, respectively using Non-Hispanic Whites as reference. Asian/Pacific Islander had equal odds of clinical trial enrollment (OR 1.08 CI 0.92-1.27). The enrolled population was younger than the general oncology population. Conclusions: This study suggests that in an integrated healthcare system with equal access to care, the clinical trials population is well representative of its general oncology population.[Table: see text]


Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 226-233
Author(s):  
Lindsey A. George

Abstract After 3 decades of clinical trials, repeated proof-of-concept success has now been demonstrated in hemophilia A and B gene therapy. Current clinical hemophilia gene therapy efforts are largely focused on the use of systemically administered recombinant adeno-associated viral (rAAV) vectors for F8 or F9 gene addition. With multiple ongoing trials, including licensing studies in hemophilia A and B, many are cautiously optimistic that the first AAV vectors will obtain regulatory approval within approximately 1 year. While supported optimism suggests that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized, a number of outstanding questions have emerged from clinical trial that are in need of answers to harness the full potential of gene therapy for hemophilia patients. This article reviews the use of AAV vector gene addition approaches for hemophilia A and B, focusing specifically on information to review in the process of obtaining informed consent for hemophilia patients prior to clinical trial enrollment or administering a licensed AAV vector.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii164-ii164
Author(s):  
Mary Jane Lim-Fat ◽  
Gilbert Youssef ◽  
Mehdi Touat ◽  
Bryan Iorgulescu ◽  
Eleanor Woodward ◽  
...  

Abstract BACKGROUND Comprehensive next generation sequencing (NGS) is available through many academic institutions and commercial entities, and is incorporated in practice guidelines for glioblastoma (GBM). We retrospective evaluated the practice patterns and utility of incorporating NGS data into routine care of GBM patients at a clinical trials-focused academic center. METHODS We identified 1,011 consecutive adult patients with histologically confirmed GBM with OncoPanel testing, a targeted exome NGS platform of 447 cancer-associated genes at Dana Farber Cancer Institute (DFCI), from 2013-2019. We selected and retrospectively reviewed clinical records of all IDH-wildtype GBM patients treated at DFCI. RESULTS We identified 557 GBM IDH-wildtype patients, of which 227 were male (40.7%). OncoPanel testing revealed 833 single nucleotide variants and indels in 44 therapeutically relevant genes (Tier 1 or 2 mutations) including PIK3CA (n=51), BRAF (n=9), FGFR1 (n=8), MSH2 (n=4), MSH6 (n=2) and MLH1 (n=1). Copy number analysis revealed 509 alterations in 18 therapeutically relevant genes including EGFR amplification (n= 186), PDGFRA amplification (N=39) and CDKN2A/2B homozygous loss (N=223). Median overall survival was 17.5 months for the whole cohort. Seventy-four therapeutic clinical trials accrued 144 patients in the upfront setting (25.9%) and 203 patients (36.4%) at recurrence. Altogether, NGS data for 107 patients (19.2%) were utilized for clinical trial enrollment or targeted therapy indications. High mutational burden (&gt;17mutations/Mb) was identified in 11/464 samples (2.4%); of whom 3/11 received immune checkpoint blockade. Four patients received compassionate use therapy targeting EGFRvIII (rindopepimut, n=2), CKD4/6 (abemaciclib, n=1) and BRAFV600E (dabrafenib/trametinib, n=1). CONCLUSION While NGS has greatly improved diagnosis and molecular classification, we highlight that NGS remains underutilized in selecting therapy in GBM, even in a setting where clinical trials and off-label therapies are relatively accessible. Continued efforts to develop better targeted therapies and efficient clinical trial design are required to maximize the potential benefits of genomically-stratified data.


US Neurology ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 47 ◽  
Author(s):  
Said R Beydoun ◽  
Jeffrey Rosenfeld

Edaravone significantly slows progression of amyotrophic lateral sclerosis (ALS), and is the first therapy to receive approval by the Food and Drug Administration (FDA) for the disease in 22 years. Approval of edaravone has marked a new chapter in pharmaceutical development since the key trial included a novel strategic clinical design involving cohort enrichment. In addition, approval was based on clinical trials that had a relatively small patient number and were performed outside of the US. Edaravone was developed through a series of clinical trials in Japan where it was determined that a well-defined subgroup of patients was required to reveal a treatment effect within the study period. Amyotrophic lateral sclerosis is associated with wide-ranging disease heterogeneity (both within the spectrum of ALS phenotypes as well as in the rate of progression). The patient cohort enrichment strategy aimed to address this heterogeneity and should now be considered as a viable, and perhaps preferred, trial design for future studies. Future research incorporating relevant biomarkers may help to better elucidate edaravone’s mechanism of action, pharmacodynamics, and subsequently ALS phenotypes that may preferentially benefit from treatment. In this review, we discuss the edaravone clinical development program, outline the strategic clinical trial design, and highlight important lessons for future trials.


Sign in / Sign up

Export Citation Format

Share Document