scholarly journals Alpha-secretase inhibition reduces human glioblastoma stem cell growth in vitro and in vivo by inhibiting Notch

2012 ◽  
Vol 14 (10) ◽  
pp. 1215-1226 ◽  
Author(s):  
Desiree H. Floyd ◽  
Benjamin Kefas ◽  
Oleksandr Seleverstov ◽  
Olga Mykhaylyk ◽  
Charli Dominguez ◽  
...  
2014 ◽  
Vol 55 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Huijie Guo ◽  
Chuanlan Liu ◽  
Liuqi Yang ◽  
Lihua Dong ◽  
Li Wang ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1691-1691
Author(s):  
Kimberly Klarmann ◽  
Daniel Gough ◽  
Benyam Asefa ◽  
Chris Clarke ◽  
Katie Renn ◽  
...  

Abstract Members of the interferon inducible-200 (IFI-200) family of proteins inhibit cell growth and may be important mediators of differentiation. We examined IFI-204 and IFI-205 mRNA expression in purified populations of hematopoietic stem and progenitor cells at different stages of maturation using quantitative RT-PCR and found that their expression markedly increased during myeloid maturation. To evaluate the effect of IFI-205 and IFI-204 on hematopoietic stem cell (HSC) growth, we transduced these genes into mouse bone marrow cells (BMC) using retroviral vectors. The presence IFI-204 or IFI-205 resulted in a decrease in cell growth in response to hematopoietic growth factors. Further analysis revealed the infected cells were 98% c-Kit+ Sca-1+, indicative of the stem cell surface phenotype, suggesting they may be blocked in a primitive stage of maturation. When transplanted, BMC transduced with IFI-204 or IFI-205 failed to engraft lymphoid, myeloid, or erythroid lineages in both short and long term reconstitution assays, suggesting that constitutive expression of IFI-204 and IFI-205 inhibited HSC development both in vitro and in vivo. However, based on the quantitative RT-PCR results, which show that IFI-205 increased during myeloid differentiation, we know its endogenous, regulated expression must permit the cells to mature. Therefore, to study of the effects of these genes on differentiation we transduced the mulitpotential EML (erythroid, myeloid, lymphoid) cell line with IFI-204 and IFI-205 to circumvent severe growth inhibition caused by expression of IFI-204 and Ifi-205 in normal cells. Single cell analysis of EMLs transduced with IFI-205 demonstrated that expression of IFI-205 in this cell line did not significantly inhibit cell growth. We have isolated EML clones from the transduced cells and verified IFI-205 expression. In addition, we generated transgenic mice that express IFI-205 under control of the Vav and MRP8 promoters, and we identified transgenic lines that express IFI-205 at higher levels compared to wild type controls. Analysis of hematopoiesis in these animals is currently in progress. Altogether, our data demonstrate 3 findings: 1) IFI-204 and IFI-205 expression increases during myeloid development based on quantitative RT-PCR analysis, 2) constitutive expression of IFI-204 and -205 results in potent inhibition of growth and maturation of normal hematopoietic stem and progenitor cells in vivo and in vitro and 3) these genes did not significantly inhibit the proliferation of the EML cell line, which provides us with a means to study the mechanism by which these molecules regulate myeloid maturation. Finally, the considerable inhibitory effects of these family members on normal hematopoietic cell growth suggest their potential as therapeutic modalities for treatment of leukemia.


2014 ◽  
Vol 15 (22) ◽  
pp. 9805-9812 ◽  
Author(s):  
Jun-Jie Qin ◽  
Jun-Mei Wang ◽  
Jiang Du ◽  
Chun Zeng ◽  
Wu Han ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yantao Liu ◽  
Yuping Yang ◽  
Lingli Zhang ◽  
Jiaqiang Lin ◽  
Bin Li ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide, and cancer stem cell is responsible for the poor clinical outcome of NSCLC. Previous reports indicated that long noncoding RNAs (lncRNAs) play important roles in maintaining cancer stemness, however, the underlying mechanisms remain unclear. This study investigates the role of ASAP1 Intronic Transcript 1 (ASAP1-IT1) in cancer cell stemness of NSCLC. Methods The expression of ASAP1-IT1, microRNA-509-3p (miR-509-3p) and apoptosis-/stemness-related genes was analyzed by qRT-PCR in NSCLC tissues, cancer cells and spheres of cancer stem cells. Knockdown of ASAP1-IT1 or overexpression of miR-509-3p in NSCLC cells by infection or transfection of respective plasmids. Sphere formation and colony formation were used to detect NSCLC stem cell-like properties and tumor growth in vitro. Luciferase reporter assays, RNA immunoprecitation (RIP) and qRT-PCR assays were used to analyze the interaction between lncRNA and miRNA. The expression of expression of regulated genes of ASAP1-IT1/miR-509-3p axis was evaluated by qRT-PCR and Western blot. The NSCLC xenograft mouse model was used to validate the role of ASAP1-IT1 in NSCLC stemness and tumor growth in vivo. Results ASAP1-IT1 was up-regulated in NSCLC tissues, cancer cells, and in spheres of A549-derived cancer stem cells. Downregulation of ASAP1-IT1 or overexpression of miR-509-3p significantly decreased cell colony formation and stem cell-like properties of A549-dereived stem cells with decreased expression of stem cell biomarkers SOX2, CD34, and CD133, and suppressing the expression of cell growth-related genes, Cyclin A1, Cyclin B1, and PCNA. Furthermore, knockdown of ASAP1-IT1 or overexpression of miR-509-3p repressed tumor growth in nude mice via reducing expression of tumorigenic genes. ASAP1-IT1 was found to interact with miR-509-3p. Moreover, overexpression of ASAP1-IT1 blocked the inhibition by miR-509-3p on stem cell-like properties and cell growth of A549-dereived stem cells both in vitro and in vivo. Finally, the level of YAP1 was regulated by ASAP1-IT1 and miR-509-3p. Conclusions YAP1-involved ASAP1-IT1/miR-509-3p axis promoted NSCLC progression by regulating cancer cell stemness, and targeting this signaling pathway could be is a promising therapeutic strategy to overcome NSCLC stemness.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5141
Author(s):  
Andrej Porčnik ◽  
Metka Novak ◽  
Barbara Breznik ◽  
Bernarda Majc ◽  
Barbara Hrastar ◽  
...  

Glioblastoma (GB), is the most common and aggressive malignant primary brain tumour in adults. Intra- and inter-tumour heterogeneity, infiltrative GB cell invasion and presence of therapy-resistant GB stem cells (GSCs) represent major obstacles to favourable prognosis and poor therapy response. Identifying the biomarkers of the most aggressive tumour cells and their more efficient targeting strategies are; therefore, crucial. Recently, transcription factor TRIM28 has been identified as a GB biomarker and, in this study, we have shown high expression of TRIM28 in GB and in low grade gliomas as well as higher expression in GSCs vs. differentiated GB cells, although in both cases not significant. We demonstrated significant in vitro inhibition of GB cells and GSCs invasiveness and spread in zebrafish brains in vivo by anti-TRIM28 selective nanobody NB237. TRIM28 was also enriched in GB (tumour) core and associated with the expression of stem cell genes, but was not prognostic for overall survival. However, based on the above results, we conclude that TRIM28 nanobody NB237 offers a new opportunity as a GB therapeutic tool.


Sign in / Sign up

Export Citation Format

Share Document