scholarly journals EXTH-30. THERAPEUTIC BENEFIT OF A KETOGENIC DIET THROUGH ALTERED GUT MICROBIOTA IN A MOUSE MODEL OF GLIOMA

2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi78-vi78 ◽  
Author(s):  
Braden McFarland ◽  
Kory Dees ◽  
Nathalia Melo ◽  
Samuel Fehling ◽  
Sara Gibson ◽  
...  
2021 ◽  
Author(s):  
Mei Ji ◽  
Cheng Fang ◽  
Wei Jia ◽  
Hai Du ◽  
Yan Xu

Ethanol (EtOH) is the main risk factor for alcoholic liver disease. However, fermented alcoholic beverages contain not only ethanol but also various volatile compounds. Currently, effects of volatile compounds in...


Life Sciences ◽  
2021 ◽  
pp. 119675
Author(s):  
Mariana Angoa-Pérez ◽  
Branislava Zagorac ◽  
Dina M. Francescutti ◽  
Kevin R. Theis ◽  
Donald M. Kuhn

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 779
Author(s):  
Pradeep K. Shukla ◽  
David F. Delotterie ◽  
Jianfeng Xiao ◽  
Joseph F. Pierre ◽  
RadhaKrishna Rao ◽  
...  

Alzheimer’s disease (AD), a progressive neurodegenerative disorder characterized by memory loss and cognitive decline, is a major cause of death and disability among the older population. Despite decades of scientific research, the underlying etiological triggers are unknown. Recent studies suggested that gut microbiota can influence AD progression; however, potential mechanisms linking the gut microbiota with AD pathogenesis remain obscure. In the present study, we provided a potential mechanistic link between dysbiotic gut microbiota and neuroinflammation associated with AD progression. Using a mouse model of AD, we discovered that unfavorable gut microbiota are correlated with abnormally elevated expression of gut NLRP3 and lead to peripheral inflammasome activation, which in turn exacerbates AD-associated neuroinflammation. To this end, we observe significantly altered gut microbiota compositions in young and old 5xFAD mice compared to age-matched non-transgenic mice. Moreover, 5xFAD mice demonstrated compromised gut barrier function as evident from the loss of tight junction and adherens junction proteins compared to non-transgenic mice. Concurrently, we observed increased expression of NLRP3 inflammasome and IL-1β production in the 5xFAD gut. Consistent with our hypothesis, increased gut–microbial–inflammasome activation is positively correlated with enhanced astrogliosis and microglial activation, along with higher expression of NLRP3 inflammasome and IL-1β production in the brains of 5xFAD mice. These data indicate that the elevated expression of gut–microbial–inflammasome components may be an important trigger for subsequent downstream activation of inflammatory and potentially cytotoxic mediators, and gastrointestinal NLRP3 may promote NLRP3 inflammasome-mediated neuroinflammation. Thus, modulation of the gut microbiota may be a potential strategy for the treatment of AD-related neurological disorders in genetically susceptible hosts.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lucy J. Newbury ◽  
Jui-Hui Wang ◽  
Gene Hung ◽  
Bruce M. Hendry ◽  
Claire C. Sharpe

Abstract Chronic Kidney Disease is a growing problem across the world and can lead to end-stage kidney disease and cardiovascular disease. Fibrosis is the underlying mechanism that leads to organ dysfunction, but as yet we have no therapeutics that can influence this process. Ras monomeric GTPases are master regulators that direct many of the cytokines known to drive fibrosis to downstream effector cascades. We have previously shown that K-Ras is a key isoform that drives fibrosis in the kidney. Here we demonstrate that K-Ras expression and activation are increased in rodent models of CKD. By knocking down expression of K-Ras using antisense oligonucleotides in a mouse model of chronic folic acid nephropathy we can reduce fibrosis by 50% and prevent the loss of renal function over 3 months. In addition, we have demonstrated in vitro and in vivo that reduction of K-Ras expression is associated with a reduction in Jag1 expression; we hypothesise this is the mechanism by which targeting K-Ras has therapeutic benefit. In conclusion, targeting K-Ras expression with antisense oligonucleotides in a mouse model of CKD prevents fibrosis and protects against renal dysfunction.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129802 ◽  
Author(s):  
Raphael Johannes Morscher ◽  
Sepideh Aminzadeh-Gohari ◽  
René Gunther Feichtinger ◽  
Johannes Adalbert Mayr ◽  
Roland Lang ◽  
...  

2021 ◽  
Vol 40 (1) ◽  
pp. 181-189 ◽  
Author(s):  
Jonathan Breton ◽  
Pauline Tirelle ◽  
Soujoud Hasanat ◽  
Arthur Pernot ◽  
Clément L'Huillier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document