Prediction of Worse Functional Status After Surgery for Degenerative Cervical Myelopathy: A Machine Learning Approach

Neurosurgery ◽  
2021 ◽  
Vol 89 (Supplement_2) ◽  
pp. S106-S106
Author(s):  
Omar Khan ◽  
Jetan H Badhiwala ◽  
Muhammad A Akbar ◽  
Michael G Fehlings
PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0215133 ◽  
Author(s):  
Zamir G. Merali ◽  
Christopher D. Witiw ◽  
Jetan H. Badhiwala ◽  
Jefferson R. Wilson ◽  
Michael G. Fehlings

Neurosurgery ◽  
2020 ◽  
Author(s):  
Omar Khan ◽  
Jetan H Badhiwala ◽  
Muhammad A Akbar ◽  
Michael G Fehlings

Abstract BACKGROUND Surgical decompression for degenerative cervical myelopathy (DCM) is one of the mainstays of treatment, with generally positive outcomes. However, some patients who undergo surgery for DCM continue to show functional decline. OBJECTIVE To use machine learning (ML) algorithms to determine predictors of worsening functional status after surgical intervention for DCM. METHODS This is a retrospective analysis of prospectively collected data. A total of 757 patients enrolled in 2 prospective AO Spine clinical studies, who underwent surgical decompression for DCM, were analyzed. The modified Japanese Orthopedic Association (mJOA) score, a marker of functional status, was obtained before and 1 yr postsurgery. The primary outcome measure was the dichotomized change in mJOA at 1 yr according to whether it was negative (worse functional status) or non-negative. After applying an 80:20 training-testing split of the dataset, we trained, optimized, and tested multiple ML algorithms to evaluate algorithm performance and determine predictors of worse mJOA at 1 yr. RESULTS The highest-performing ML algorithm was a polynomial support vector machine. This model showed good calibration and discrimination on the testing data, with an area under the receiver operating characteristic curve of 0.834 (accuracy: 74.3%, sensitivity: 88.2%, specificity: 72.4%). Important predictors of functional decline at 1 yr included initial mJOA, male gender, duration of myelopathy, and the presence of comorbidities. CONCLUSION The reasons for worse mJOA are frequently multifactorial (eg, adjacent segment degeneration, tandem lumbar stenosis, ongoing neuroinflammatory processes in the cord). This study successfully used ML to predict worse functional status after surgery for DCM and to determine associated predictors.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document