scholarly journals Novel Findings in Obstetric Brachial Plexus Palsy: A Study of Corpus Callosum Volumetry and Resting-State Functional Magnetic Resonance Imaging of Sensorimotor Network

Neurosurgery ◽  
2017 ◽  
Vol 83 (5) ◽  
pp. 905-914 ◽  
Author(s):  
Kishore Kislay ◽  
Bhagavatula Indira Devi ◽  
Dhananjaya Ishwar Bhat ◽  
Dhaval Prem Shukla ◽  
Arun Kumar Gupta ◽  
...  

Abstract BACKGROUND The response of the brain to obstetric brachial plexus palsy (OBPP) is not clearly understood. We propose that even a peripheral insult at the developmental stage may result in changes in the volume of white matter of the brain, which we studied using corpus callosum volumetry and resting-state functional magnetic resonance imaging (rsfMRI) of sensorimotor network. OBJECTIVE To study the central neural effects in OBPP. METHODS We performed an MRI study on a cohort of 14 children who had OBPP and 14 healthy controls. The mean age of the test subjects was 10.07 ± 1.22 yr (95% confidence interval). Corpus callosum volumetry was compared with that of age-matched healthy subjects. Hofer and Frahm segmentation was used. Resting-state fMRI data were analyzed using the FSL software (FMRIB Software Library v5.0, Oxford, United Kingdom), and group analysis of the sensorimotor network was performed. RESULTS Statistical analysis of corpus callosum volume revealed significant differences between the OBPP cohort and healthy controls, especially in the motor association areas. Independent t-test revealed statistically significant volume loss in segments I (prefrontal), II (premotor), and IV (primary sensory area). rsfMRI of sensorimotor network showed decreased activation in the test hemisphere (the side contralateral to the injured brachial plexus) and also decreased activation in the ipsilateral hemisphere, when compared with healthy controls. CONCLUSION OBPP occurs in an immature brain and causes central cortical changes. There is secondary corpus callosum atrophy which may be due to retrograde transneuronal degeneration. This in turn may result in disruption of interhemispheric coactivation and consequent reduction in activation of sensorimotor network even in the ipsilateral hemisphere.

2017 ◽  
Vol 3 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ligia C. S. Fonseca ◽  
Annika K. Nelke ◽  
Jörg Bahm ◽  
Catherine Disselhorst-Klug

Abstract:Coping strategies of patients with obstetric brachial plexus palsy (OBPP) are highly individual. Up to now, individual movement performance is assessed by visual observations of physicians or therapists - a procedure, which is highly subjective and lacks objective data. However, objective data about the individual movement performance are the key to evidence-based and individualized treatment. In this paper, a new approach is presented, which provides objective information about the upper extremity movement performance of patients with OBPP. The approach is based on the use of accelerometers in combination with a classification procedure. The movement performance of 10 healthy volunteers and 41 patients with OBPP has been evaluated by experienced physiotherapists and has been assigned to one of 4 categories representing the Mallet Scale (MS) IV to I. Three triaxial-accelerometers were placed at chest, upper arm and wrist of the affected side of the patient. Acceleration signals have been recorded during repetitive movements with relevance regarding daily life. Here, especially the results from the “hand to mouth” task are presented. From the 9 recorded acceleration signals 13 relevant features were extracted. For each of the 13 features 4 thresholds have been determined distinguishing best between the 4 patient categories of the MS and the healthy subjects. With respect to the thresholds each feature value has been assigned to the discrete numbers 0, 1, 2, 3 or 4. Afterwards, each discrete number has been weighted by a factor regarding the correlation between the feature’s value and the MS score. The resulting weighted discrete numbers of all 13 features have been added resulting in a score, which quantifies the individual upper extremity movement performance. Based on this score the movement performance of each patient has been assigned to the classes “very good”, “good”, “regular” and “bad”. All movements of the 10 healthy volunteers were classified as “very good”. The movement performance of two patients MS IV were classified as “very good” as well and the movements of the other 16 patients as “good”. The movements of the entire group of MS III patients fell into the class “regular”. Just one MS II patient was assigned to the class “regular” while the others were classified as “bad”. It was not possible to classify the movements of MS I patients. This was mainly due to the fact that none of these patients MS I was able to complete the task successfully. The developed approach demonstrated its ability to quantify the movement performance of upper extremity movements based on accelerometers. This provides an easy to use tool to assess patient’s movement strategies during daily tasks for diagnosis and rehabilitation.


2008 ◽  
Vol 87 (10) ◽  
pp. 1027-1032 ◽  
Author(s):  
Bjørn Backe ◽  
Elisabeth Balstad Magnussen ◽  
Ole Jakob Johansen ◽  
Gerd Sellaeg ◽  
Harald Russwurm

2002 ◽  
Vol 27 (1) ◽  
pp. 13-19 ◽  
Author(s):  
A. C. FULLARTON ◽  
D. V. LENIHAN ◽  
L. M. MYLES ◽  
M. A. GLASBY

A Sunderland type IV traction injury to the C6 root of adult sheep or newborn lamb brachial plexus was used as a model for obstetric traction injury to the C5 root in humans. In one experimental cohort the injury was created and repaired using interfascicular nerve autografts or coaxially aligned freeze-thawed skeletal muscle autografts in a group of adult sheep and in a group of newborn lambs. In a second cohort a similar injury was created and repaired either immediately or after a delay of 30 days, using either interfascicular nerve autografts or coaxially aligned freeze-thawed skeletal muscle autografts in four groups of six newborn lambs. In all cases both functional and morphometric indices of nerve regeneration were poorer in the injured and repaired nerves than in normal nerves. In lambs the method of repair made no difference and no significant differences were found for any of the indices of nerve function or morphology. In sheep the use of muscle grafts was associated with a poorer outcome than the use of nerve autografts. Where a delay of 30 days had elapsed between injury and repair, the results using nerve autografts were not significantly different. Where freeze-thawed muscle autografts had been used, the maturation of the regenerated nerve fibres after delay was significantly poorer than after immediate repair. The electrophysiological variables CVmax and jitter, which may be applied clinically, were found to be good discriminators of recovery in all of the animals and in respect of all procedures.


2020 ◽  
Vol 63 (9) ◽  
pp. 3051-3067
Author(s):  
Amy E. Ramage ◽  
Semra Aytur ◽  
Kirrie J. Ballard

Purpose Brain imaging has provided puzzle pieces in the understanding of language. In neurologically healthy populations, the structure of certain brain regions is associated with particular language functions (e.g., semantics, phonology). In studies on focal brain damage, certain brain regions or connections are considered sufficient or necessary for a given language function. However, few of these account for the effects of lesioned tissue on the “functional” dynamics of the brain for language processing. Here, functional connectivity (FC) among semantic–phonological regions of interest (ROIs) is assessed to fill a gap in our understanding about the neural substrates of impaired language and whether connectivity strength can predict language performance on a clinical tool in individuals with aphasia. Method Clinical assessment of language, using the Western Aphasia Battery–Revised, and resting-state functional magnetic resonance imaging data were obtained for 30 individuals with chronic aphasia secondary to left-hemisphere stroke and 18 age-matched healthy controls. FC between bilateral ROIs was contrasted by group and used to predict Western Aphasia Battery–Revised scores. Results Network coherence was observed in healthy controls and participants with stroke. The left–right premotor cortex connection was stronger in healthy controls, as reported by New et al. (2015) in the same data set. FC of (a) connections between temporal regions, in the left hemisphere and bilaterally, predicted lexical–semantic processing for auditory comprehension and (b) ipsilateral connections between temporal and frontal regions in both hemispheres predicted access to semantic–phonological representations and processing for verbal production. Conclusions Network connectivity of brain regions associated with semantic–phonological processing is predictive of language performance in poststroke aphasia. The most predictive connections involved right-hemisphere ROIs—particularly those for which structural adaptions are known to associate with recovered word retrieval performance. Predictions may be made, based on these findings, about which connections have potential as targets for neuroplastic functional changes with intervention in aphasia. Supplemental Material https://doi.org/10.23641/asha.12735785


Sign in / Sign up

Export Citation Format

Share Document