scholarly journals Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors

2019 ◽  
Vol 7 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Hongyi Yu ◽  
Mingxing Chen ◽  
Wang Yao

Abstract When quasiparticles move in condensed matters, the texture of their internal quantum structure as a function of position and momentum can give rise to Berry phases that have profound effects on the material’s properties. Seminal examples include the anomalous Hall and spin Hall effects from the momentum-space Berry phases in homogeneous crystals. Here, we explore a conjugate form of the electron Berry phase arising from the moiré pattern: the texture of atomic configurations in real space. In homobilayer transition metal dichalcogenides, we show that the real-space Berry phase from moiré patterns manifests as a periodic magnetic field with magnitudes of up to hundreds of Tesla. This quantity distinguishes moiré patterns from different origins, which can have an identical potential landscape, but opposite quantized magnetic flux per supercell. For low-energy carriers, the homobilayer moirés realize topological flux lattices for the quantum-spin Hall effect. An interlayer bias can continuously tune the spatial profile of the moiré magnetic field, whereas the flux per supercell is a topological quantity that can only have a quantized jump observable at a moderate bias. We also reveal the important role of the non-Abelian Berry phase in shaping the energy landscape in small moiré patterns. Our work points to new possibilities to access ultra-high magnetic fields that can be tailored to the nanoscale by electrical and mechanical controls.

2017 ◽  
Vol 114 (27) ◽  
pp. 6996-7000 ◽  
Author(s):  
K. T. Law ◽  
Patrick A. Lee

1T-TaS2 is unique among transition metal dichalcogenides in that it is understood to be a correlation-driven insulator, where the unpaired electron in a 13-site cluster experiences enough correlation to form a Mott insulator. We argue, based on existing data, that this well-known material should be considered as a quantum spin liquid, either a fully gapped Z2 spin liquid or a Dirac spin liquid. We discuss the exotic states that emerge upon doping and propose further experimental probes.


2021 ◽  
Vol 77 (5) ◽  
pp. 460-471
Author(s):  
M. Feuerbacher

A real-space approach for the calculation of the moiré lattice parameters for superstructures formed by a set of rotated hexagonal 2D crystals such as graphene or transition-metal dichalcogenides is presented. Apparent moiré lattices continuously form for all rotation angles, and their lattice parameter to a good approximation follows a hyperbolical angle dependence. Moiré crystals, i.e. moiré lattices decorated with a basis, require more crucial assessment of the commensurabilities and lead to discrete solutions and a non-continuous angle dependence of the moiré-crystal lattice parameter. In particular, this lattice parameter critically depends on the rotation angle, and continuous variation of the angle can lead to apparently erratic changes of the lattice parameter. The solutions form a highly complex pattern, which reflects number-theoretical relations between formation parameters of the moiré crystal. The analysis also provides insight into the special case of a 30° rotation of the constituting lattices, for which a dodecagonal quasicrystalline structure forms.


Science ◽  
2014 ◽  
Vol 346 (6214) ◽  
pp. 1205-1208 ◽  
Author(s):  
Jonghwan Kim ◽  
Xiaoping Hong ◽  
Chenhao Jin ◽  
Su-Fei Shi ◽  
Chih-Yuan S. Chang ◽  
...  

The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2.Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli–electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.


Sign in / Sign up

Export Citation Format

Share Document