Reproductive Allocation in Animals

Ecology ◽  
2012 ◽  
Author(s):  
James Gilbert

Reproductive allocation is a term used in ecology and evolutionary biology that refers to the proportion of an organism’s energy budget allocated to reproduction at any given time. Reproduction must be balanced (or traded off) against opposing expenditures such as growth, survival, maintenance, and future reproduction. The term also covers division of resources among offspring size and number. Studying reproductive allocation trade-offs is fundamental to the fields of behavioral ecology and physiological ecology, which use evolutionary theory to explain and predict animal behavior and physiology, respectively. More specifically, these trade-offs are central to the field of life history, which studies how growth and reproduction is distributed across animals’ lifetimes. Animals show a vast degree of variation in reproductive allocation. Kiwis, for example, famously lay a single egg that is up to 20 percent of body weight. As if this were nothing, caecilians (amphibians) can bear live litters of offspring that are up to 65 percent of the mother’s body weight. Egg numbers vary enormously and can reach spectacular numbers: tsetse flies bear as few as six live offspring in a lifetime, whereas ghost moths can lay more than 50,000 eggs. Social insects have truly mind-boggling fecundity: driver ants can lay several million eggs per month, and can live for decades; ocean sunfish release about 300 million eggs at a time, more than any other vertebrate. At the other extreme, very many organisms have one offspring at a time. Usually this goes hand in hand with repeated breeding, but perhaps the most puzzling of allocation decisions is found in dung beetles, which have only one ovary; some species lay as few as five to ten eggs. Careful parental care ensures that more than 90 percent of offspring survive, explaining why these species have not become extinct. Clearly, variation of this order of magnitude requires evolutionary explanation. Research into reproductive allocation has progressed from a simple household-economics outlook based on the division of a fixed energy budget toward more sophisticated approaches based on quantitative and mechanistic genetics. Of particular use have been model systems such as Drosophila and Daphnia, where traits of reproductive allocation (body size, egg size, egg number, etc.) have become model traits for modern genetic analyses. Modern approaches to reproductive allocation typically involve elucidating genetic bases for trade-offs expressed across a range of environments. Nevertheless, the classical life history approaches remain relevant, especially in systems in which controlled quantitative genetics are not possible.

2021 ◽  
Author(s):  
◽  
John Van der Sman

<p>Parental investment per offspring is a key life history trait in which offspring size and number combinations are balanced in order to maximise fitness. When food is scarce and energy for reproduction is reduced, changes in reproductive allocation can be expected. These adjustments may go on to influence the growth and survival of the next generation. Trade-offs in reproductive allocation in response to food availability occurred differently in each of the three whelks species of this study. However, each species traded numbers of offspring rather than size of offspring when fed low food. Offspring size was more variable among and within capsules than among food treatments. Capsule size was a plastic trait that varied in response to food treatments in each of the species and varied among populations of the same species. Carry-over effects of maternal nutrition influenced juvenile growth in all three species. However, while juvenile growth was greater when adults were fed high food in two of the species, high adult food suppressed the growth of juveniles of the third species. This may be a mechanism to prevent potential negative consequences of rapid growth. There was no evidence of a maternal effect of mortality in any of the three species. Greater variation in hatchling size occurred in the species in which nurse egg feeding occurred. Nurse egg feeding may be a successful strategy in unpredictable environments where optimal offspring size changes from year to year. Regional differences in reproductive allocation between whelks separated by small distances suggest that populations may be isolated from one another and may need to be managed separately for conservation purposes. This study highlights the influence of maternal nutritional effects on life history and the potential impacts that these may have on population and community structure.</p>


2021 ◽  
Author(s):  
◽  
John Van der Sman

<p>Parental investment per offspring is a key life history trait in which offspring size and number combinations are balanced in order to maximise fitness. When food is scarce and energy for reproduction is reduced, changes in reproductive allocation can be expected. These adjustments may go on to influence the growth and survival of the next generation. Trade-offs in reproductive allocation in response to food availability occurred differently in each of the three whelks species of this study. However, each species traded numbers of offspring rather than size of offspring when fed low food. Offspring size was more variable among and within capsules than among food treatments. Capsule size was a plastic trait that varied in response to food treatments in each of the species and varied among populations of the same species. Carry-over effects of maternal nutrition influenced juvenile growth in all three species. However, while juvenile growth was greater when adults were fed high food in two of the species, high adult food suppressed the growth of juveniles of the third species. This may be a mechanism to prevent potential negative consequences of rapid growth. There was no evidence of a maternal effect of mortality in any of the three species. Greater variation in hatchling size occurred in the species in which nurse egg feeding occurred. Nurse egg feeding may be a successful strategy in unpredictable environments where optimal offspring size changes from year to year. Regional differences in reproductive allocation between whelks separated by small distances suggest that populations may be isolated from one another and may need to be managed separately for conservation purposes. This study highlights the influence of maternal nutritional effects on life history and the potential impacts that these may have on population and community structure.</p>


2005 ◽  
Vol 273 (1587) ◽  
pp. 741-750 ◽  
Author(s):  
Barbara Taborsky

There is increasing evidence that the environment experienced early in life can strongly influence adult life histories. It is largely unknown, however, how past and present conditions influence suites of life-history traits regarding major life-history trade-offs. Especially in animals with indeterminate growth, we may expect that environmental conditions of juveniles and adults independently or interactively influence the life-history trade-off between growth and reproduction after maturation. Juvenile growth conditions may initiate a feedback loop determining adult allocation patterns, triggered by size-dependent mortality risk. I tested this possibility in a long-term growth experiment with mouthbrooding cichlids. Females were raised either on a high-food or low-food diet. After maturation half of them were switched to the opposite treatment, while the other half remained unchanged. Adult growth was determined by current resource availability, but key reproductive traits like reproductive rate and offspring size were only influenced by juvenile growth conditions, irrespective of the ration received as adults. Moreover, the allocation of resources to growth versus reproduction and to offspring number versus size were shaped by juvenile rather than adult ecology. These results indicate that early individual history must be considered when analysing causes of life-history variation in natural populations.


2006 ◽  
Vol 362 (1486) ◽  
pp. 1873-1886 ◽  
Author(s):  
Oliver Krüger

The interactions between brood parasitic birds and their host species provide one of the best model systems for coevolution. Despite being intensively studied, the parasite–host system provides ample opportunities to test new predictions from both coevolutionary theory as well as life-history theory in general. I identify four main areas that might be especially fruitful: cuckoo female gentes as alternative reproductive strategies, non-random and nonlinear risks of brood parasitism for host individuals, host parental quality and targeted brood parasitism, and differences and similarities between predation risk and parasitism risk. Rather than being a rare and intriguing system to study coevolutionary processes, I believe that avian brood parasites and their hosts are much more important as extreme cases in the evolution of life-history strategies. They provide unique examples of trade-offs and situations where constraints are either completely removed or particularly severe.


2018 ◽  
pp. 323-346
Author(s):  
Gary A. Wellborn

Predation is a powerful agent of life history evolution in prey species, as demonstrated in diverse examples in crustaceans. Ubiquitous size- and age-selective predation mediates trade-offs among reproductive effort, survival, and growth, which cause evolution of constitutive and phenotypically plastic shifts in age and size at maturity. In accord with predictions of life history theory, comparative studies demonstrate that contrasting forms of selective predation generate divergent evolutionary changes in age- and size-specific allocation of reproductive effort within populations and species. Predation risk also influences egg and offspring size, and some crustaceans exhibit phenotypic plasticity in offspring size in response to chemical cues of predators. Because age-selective predation impacts the relative benefits of earlier versus later reproductive investment, predation may also shape senescence and life span of crustaceans. Additionally, individual differences in risk-taking behavior, sometimes termed “personalities,” have been examined in several crustaceans, and these may arise through among-individual variation in reproductive value. Finally, in some crustacean groups limb autotomy is a common, but costly, antipredator defense, and life history perspectives on autotomy suggest individuals may balance costs and benefits during predator encounters. Much of our understanding of predation’s role in life history evolution of prey derives from studies of crustaceans, and these organisms continue to be promising avenues to elucidate mechanisms of life history evolution.


Oecologia ◽  
1996 ◽  
Vol 107 (3) ◽  
pp. 283-292 ◽  
Author(s):  
E. M. Stam ◽  
M. A. van de Leemkule ◽  
G. Ernsting

2019 ◽  
Author(s):  
Cecina Babich Morrow ◽  
S. K. Morgan Ernest ◽  
Andrew J. Kerkhoff

AbstractLife history traits represent organism’s strategies to navigate the fitness trade-offs between survival and reproduction. Eric Charnov developed three dimensionless metrics to quantify fundamental life history trade-offs. Lifetime reproductive effort (LRE), relative reproductive lifespan (RRL), and relative offspring size (ROS), together with body mass, can be used classify life history strategies across the four major classes of tetrapods: amphibians, reptiles, mammals, and birds. First, we investigate how the metrics have evolved in concert with body mass. In most cases, we find evidence for correlated evolution between body mass and the three metrics. Finally, we compare life history strategies across the four classes of tetrapods and find that LRE, RRL, and ROS delineate a space in which the major tetrapod clades occupy mostly unique subspaces. These distinct combinations of life history strategies provide us with a framework to understand the impact of major evolutionary transitions in energetics, physiology, and ecology.


2020 ◽  
pp. 1-28
Author(s):  
Jared M. Goos ◽  
Punidan D. Jeyasingh

The allocation of resources is a fundamental component of all life history models. Inherent in these models is the concept of allocation trade-offs, where finite resources must be allocated to certain life history traits at the expense of others. Reproduction is thought to be a costly trait in most organisms, and thus allocation to reproduction could drive the evolution of other life history traits. Much research has examined patterns of resource allocation to reproduction and the resulting trade-offs with other life history traits, both within and among taxa. In many respects, empirical work on crustaceans has pioneered our understanding of life history evolution. In this chapter, we examine the great diversity in allocation of resources to reproduction among crustaceans. For many years, crustaceans have served as important models in understanding the importance of a variety of resources (e.g., energy, inorganic nutrients, organic nutrients) to reproduction. Diversity in allocation to reproduction is evident regardless of the resource under investigation. Because of the interconnectedness among such resource parameters, and the rapid change in the availability of such resources in the Anthropocene, frameworks integrating variation in multiple resource axes have much promise in discovering general rules underlying reproductive allocation in natural populations. Given the diverse allocation strategies employed, and the rich history of studies examining reproductive allocation, crustaceans will continue to be an important taxon for such work.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Cecina Babich Morrow ◽  
S. K. Morgan Ernest ◽  
Andrew J. Kerkhoff

Life-history traits represent organisms' strategies to navigate the fitness trade-offs between survival and reproduction. Eric Charnov developed three dimensionless metrics to quantify fundamental life-history trade-offs. Lifetime reproductive effort (LRE), relative reproductive lifespan (RRL) and relative offspring size (ROS), together with body mass can be used to classify life-history strategies across the four major classes of tetrapods: amphibians, reptiles, mammals and birds. First, we investigate how the metrics have evolved in concert with body mass within tetrapod lineages. In most cases, we find evidence for correlated evolution among body mass and the three dimensionless metrics. Second, we compare life-history strategies across the four classes of tetrapods and find that LRE, RRL and ROS delineate a space in which the major tetrapod classes occupy mostly unique subspaces. These distinct combinations of life-history strategies provide us with a framework to understand the impact of major evolutionary transitions in energetics, physiology and ecology.


2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Szymon Marian Drobniak ◽  
Michael Griesser

Reproductive allocation varies greatly across species and is determined by their life-history and ecology. This variation is usually assessed as the number of eggs or propagules (hereafter: fecundity). However, in species with parental care, individuals face trade-offs that affect the allocation of resources among the stages of reproduction as well as to reproduction as a whole. Thus, it is critical to look beyond fecundity to understand the evolution of life-histories and how investment into different reproductive components interact with each other. Here we assessed the influence of species-specific traits and ecological factors on interspecific variation in reproductive performance at each nesting stage of 72 avian populations. Annual productivity was unrelated to annual fecundity. Annual fecundity correlated positively with a fast life-history pace, precociality and non-migratory habits, but these traits were unrelated to reproductive success. Rather, the breeding ecology of a species determined productivity at each stage of nesting, but did not influence fecundity. These results challenge prevailing theory and emphasize that conclusions of interspecific variation in fitness based on numbers of eggs may be equivocal. Moreover, parental decisions regarding reproductive allocation face diverse constraints at different stages of reproduction, influencing the evolution of reproductive tactics in species with parental care.


Sign in / Sign up

Export Citation Format

Share Document