antipredator defense
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258218
Author(s):  
Koji Mochida ◽  
Akira Mori

Newts and salamanders show remarkable diversity in antipredator behavior, developed to enhance their chemical defenses and/or aposematism. The present study reports on the antipredator behavior of newts (Cynops pyrrhogaster) in response to snakes. Newts displayed a significant amount of tail-wagging and tail-undulation in response to a contact stimulus from the snake’s tongue, which is a snake-specific predator stimulus, as compared to a control stimulus (behavioral scores: tongue, 1.05 ± 0.41; control, 0.15 ± 0.15). Newts that were kept in warm temperature conditions, 20°C (at which snakes are active in nature), performed tail displays more frequently than newts kept in low-temperature conditions, 4°C (at which snakes are inactive in nature). Our results suggest that the tail displays of C. pyrrhogaster could function as an antipredator defense; they direct a snake’s attention to its tail to prevent the snake from attacking more vulnerable body parts. We also discussed the reason for inter-populational variation in the tendency of newts to perform tail displays.


2021 ◽  
Vol 34 (4) ◽  
pp. 223-239
Author(s):  
Rosalind K. Humphreys ◽  
Graeme D. Ruxton ◽  
Alison J. Karley

AbstractDropping behavior is an effective antipredator defense utilized by many insects including aphids, which drop from plants to lower plant parts or underlying substrates to avoid attack from predatory invertebrates. While research commonly focusses on triggers of dropping, less attention is given to what happens to prey individuals following escape drops. In this study, the duration of tonic immobility, recovery rates, and cases of “instant recovery” (re-clinging to lower plant parts) exhibited by potato aphids (Macrosiphum euphorbiae) that dropped from potted seedlings in response to introduced ladybird (Adalia bipunctata) adults, lacewing (Chrysoperla carnea) larvae, and a standardized tactile stimulus were investigated in relation to a range of environmental factors. Air temperature had a negative correlation with the duration of post-dropping tonic immobility; as temperature increased, time spent motionless decreased. Aphids also showed a pattern of increased recovery rate at higher temperatures. Aphids may be selected to move off the substrate quicker to avoid risks of overheating/desiccation at higher temperatures; and/or higher body temperature facilitates locomotion. Stimulus type also influenced recovery rate back to the original seedling, with aphids generally recovering after the standardized stimulus quicker than after dropping triggered by a real predator. Considering cases of instant recovery onto lower-reaches of the host seedling, seedling height influenced the likelihood of re-clinging, with aphids that managed to instantly recover dropping from, on average, taller seedlings than aphids that dropped to the substrate. Plant architecture could mitigate the costs of dropping for aphids, but further studies quantifying understory foliage cover are needed.


Author(s):  
Benjamín Silva ◽  
Meredith Root-Bernstein

Artiodactyl prey species of Chile, especially guanacos (Lama guanicoe) are reported to be very susceptible to predation by pack hunting feral dogs. It has been previously suggested that guanacos and endemic South American deer may have evolved in the absence of pack-hunting cursorial predators. However, the paleoecology of canid presence in southern South America and Chile is unclear. Here, we review the literature on South American and Chilean canids, their distributions, ecologies and hunting behaviour. We consider both wild and domestic canids, including Canis familiaris breeds. We establish two known antipredator defense behaviours of guanacos: predator inspection of ambush predators, e.g. Puma concolor, and rushing at and kicking smaller cursorial predators, e.g. Lycalopex culpaeus. We propose that since the late Pleistocene extinction of hypercarnivorous group-hunting canids east of the Andes, there were no native species creating group-hunting predation pressures on guanacos. Endemic deer of Chile may have never experienced group hunting selection pressure from native predators. Even hunting dogs (or other canids) used by indigenous groups in the far north and extreme south of Chile (and presumably the center as well) appear to have been used primarily within ambush hunting strategies. This may account for the susceptibility of guanacos and other prey species to feral dog attacks. We detail seven separate hypotheses that require further investigation in order to assess how best to respond to the threat posed by feral dogs to the conservation of native deer and camelids in Chile and other parts of South America.


2021 ◽  
Author(s):  
Kerry L Gendreau ◽  
Angela D Hornsby ◽  
Michael TJ Hague ◽  
Joel W McGlothlin

AbstractTarichanewts contain high concentrations of the deadly toxin TTX as an antipredator defense, requiring them to be physiologically resistant to their own toxin. Here, we reconstruct the origins of TTX self-resistance by sequencing the voltage-gated sodium channel (SCNA) gene family, the target of TTX, in newts and related salamanders. We show that extreme resistance in newts consists of a mixture of ancient changes and lineage-specific substitutions and that the nonsynonymous substitution rate is elevated in newts, suggesting positive selection. We also identify a novel exon duplication withinSCN4Aencoding an expressed TTX-binding site. Two resistance-conferring changes within newts appear to have spread via nonallelic gene conversion: in one case, one codon was copied between paralogs, and in the second, multiple substitutions were homogenized between the duplicate exons ofSCN4A. Our results demonstrate that gene conversion can accelerate the coordinated evolution of gene families in response to selection.


Food Webs ◽  
2021 ◽  
pp. e00192
Author(s):  
Samantha J. Sawyer ◽  
Travis W. Rusch ◽  
Aaron M. Tarone ◽  
Jeffery K. Tomberlin

Author(s):  
Benjamín Silva ◽  
Meredith Root-Bernstein

Artiodactyl prey species of Chile, especially guanacos (Lama guanicoe) are reported to be very susceptible to predation by pack hunting feral dogs. It has been previously suggested that guanacos and endemic South American deer may have evolved in the absence of pack-hunting cursorial predators. However, the paleoecology of canid presence in southern South America and Chile is unclear. Here, we review the literature on South American and Chilean canids, their distributions, ecologies and hunting behaviour. We consider both wild and domestic canids, including Canis familiaris breeds. We establish two known antipredator defense behaviours of guanacos: predator inspection of ambush predators, e.g. Puma concolor, and rushing at and kicking smaller cursorial predators, e.g. Lycalopex culpaeus. We propose that since the late Pleistocene extinction of hypercarnivorous group-hunting canids east of the Andes, there were no native species creating group-hunting predation pressures on guanacos. Endemic deer of Chile may have never experienced group hunting selection pressure from native predators. Even hunting dogs (or other canids) used by indigenous groups in the far north and extreme south of Chile (and presumably the center as well) appear to have been used primarily within ambush hunting strategies. This may account for the susceptibility of guanacos and other prey species to feral dog attacks. We detail seven separate hypotheses that require further investigation in order to assess how best to respond to the threat posed by feral dogs to the conservation of native deer and camelids in Chile and other parts of South America.


Author(s):  
Logan D Crees ◽  
Phil DeVries ◽  
Carla M Penz

Abstract In general, butterfly ventral hind wing eyespots are considered to play a role in predator–prey interactions. These eyespots are prominent wing pattern elements in Brassolini butterflies, and they vary in size, position, and number across taxa. Female Caligo Hübner, 1819 (Lepidoptera, Nymphalidae) appear to use the large eyespots of lekking males as a mate-locating cue, but female Opsiphanes Doubleday, 1849 (Lepidoptera, Nymphalidae) do not because males patrol to find mates. These behaviors led us to predict that male Caligo should have larger eyespots than females, but eyespot size would not differ between sexes in Opsiphanes. Our analyses supported these predictions. As displacement of the eyespots to the center of the wing might make them more conspicuous, we asked if eyespot position and size covaried across the Brassolini phylogeny. While we found a positive association between position and size, the relationship of these two variables contained significant phylogenetic signal. Two Brassolini species show strong sexual dimorphism where females converge on the color pattern of sympatric species of Caligo. Their ventral hind wing eyespots are much larger than those of close relatives, approximating those of Caligo, and further reinforcing the importance of ventral hind wing eyespots as a visual signal in this group of butterflies. Importantly, our results suggest that, in addition to antipredation defense, ventral hind wing eyespots can function in mating activities, and consequently they might be evolving under both natural and sexual selection in Caligo butterflies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hannah M. Rowland ◽  
Robert P. Burriss ◽  
John Skelhorn

AbstractCamouflage is the most common form of antipredator defense, and is a textbook example of natural selection. How animals’ appearances prevent detection or recognition is well studied, but the role of prey behavior has received much less attention. Here we report a series of experiments with twig-mimicking larvae of the American peppered moth Biston betularia that test the long-held view that prey have evolved postures that enhance their camouflage, and establish how food availability and ambient temperature affect these postures. We found that predators took longer to attack larvae that were resting in a twig-like posture than larvae resting flat against a branch. Larvae that were chilled or food restricted (manipulations intended to energetically stress larvae) adopted a less twig-like posture than larvae that were fed ad libitum. Our findings provide clear evidence that animals gain antipredator benefits from postural camouflage, and suggest that benefits may come at an energetic cost that animals are unwilling or unable to pay under some conditions.


2020 ◽  
Vol 31 (6) ◽  
pp. 1369-1378 ◽  
Author(s):  
Dario Josi ◽  
Annika Freudiger ◽  
Michael Taborsky ◽  
Joachim G Frommen

Abstract In cooperatively breeding species, nonbreeding individuals provide alloparental care and help in territory maintenance and defense. Antipredator behaviors of subordinates can enhance offspring survival, which may provide direct and indirect fitness benefits to all group members. Helping abilities and involved costs and benefits, risks, and outside options (e.g., breeding independently) usually diverge between group members, which calls for status-specific differentiated behavioral responses. Such role differentiation within groups may generate task-specific division of labor, as exemplified by eusocial animals. In vertebrates, little is known about such task differentiation among group members. We show how breeders and helpers of the cooperatively breeding cichlid Neolamprologus savoryi partition predator defense depending on intruder type and the presence of dependent young. In the field, we experimentally simulated intrusions by different fish species posing a risk either specifically to eggs, young, or adults. We used intrusions by harmless algae eaters as a control. Breeders defended most when dependent young were present, while helper investment hinged mainly on their body size and on the potential threat posed by the respective intruders. Breeders and helpers partitioned defense tasks primarily when dependent young were exposed to immediate risk, with breeders investing most in antipredator defense, while helpers increased guarding and care in the breeding chamber. Breeders’ defense likely benefits helpers as well, as it was especially enhanced in the treatment where helpers were also at risk. These findings illustrate that in a highly social fish different group members exhibit fine-tuned behavioral responses in dependence of ecological and reproductive parameter variation.


2020 ◽  
Vol 60 (5) ◽  
pp. 1036-1057
Author(s):  
Jayne E Yack ◽  
Brianna H Raven ◽  
Michelle B Leveillee ◽  
Mairelys Naranjo

Synopsis Insects have a diversity of hearing organs known to function in a variety of contexts, including reproduction, locating food, and defense. While the role of hearing in predator avoidance has been extensively researched over the past several decades, this research has focused on the detection of one type of predator-echolocating bats. Here we reassess the role of hearing in antipredator defense by considering how insects use their ears to detect and avoid the wide range of predators that consume them. To identify the types of sounds that could be relevant to insect prey, we first review the topic of hearing-mediated predator avoidance in vertebrates. Sounds used by vertebrate prey to assess predation risk include incidental sound cues (e.g., flight sounds, rustling vegetation, and splashing) produced by an approaching predator or another escaping prey, as well as communication signals produced by a predator (e.g., echolocation calls, songs) or nonpredator (e.g., alarm calls). We then review what is known, and what is not known, about such sounds made by the main predators and parasitoids of insects (i.e., birds, bats, terrestrial vertebrates, and invertebrates) and how insects respond to them. Three key insights emerged from our review. First, there is a lack of information on how both vertebrate and insect prey use passive sound cues produced by predators to avoid being captured. Second, while there are numerous examples of vertebrate prey eavesdropping on the calls and songs of predators and nonpredators to assess risk, there are currently no such examples for eared insect prey. Third, the hearing sensitivity of many insects, including those with ears considered to be dedicated to detecting bats or mates, overlaps with both sound cues and signals generated by nonbat predators. Sounds of particular relevance to insect prey include the flight sounds and calls of insectivorous birds, the flight sounds of insect predators and parasitoids, and rustling vegetation sounds of birds and terrestrial predators. We conclude that research on the role of insect hearing in predator avoidance has been disproportionally focused on bat-detection, and that acoustically-mediated responses to other predators may have been overlooked because the responses of prey may be subtle (e.g., ceasing activity, increasing vigilance). We recommend that researchers expand their testing of hearing-mediated risk assessment in insects by considering the wide range of sounds generated by predators, and the varied responses exhibited by prey to these sounds.


Sign in / Sign up

Export Citation Format

Share Document