scholarly journals Law and Energy Transitions: Wind Turbines and Planning Law in the UK

2018 ◽  
Vol 38 (3) ◽  
pp. 528-556 ◽  
Author(s):  
Elizabeth Fisher
Author(s):  
Kiran Tota-Maharaj ◽  
Alexander McMahon

AbstractWind power produces more electricity than any other form of renewable energy in the United Kingdom (UK) and plays a key role in decarbonisation of the grid. Although wind energy is seen as a sustainable alternative to fossil fuels, there are still several environmental impacts associated with all stages of the lifecycle of a wind farm. This study determined the material composition for wind turbines for various sizes and designs and the prevalence of such turbines over time, to accurately quantify waste generation following wind turbine decommissioning in the UK. The end of life stage is becoming increasingly important as a rapid rise in installation rates suggests an equally rapid rise in decommissioning rates can be expected as wind turbines reach the end of their 20–25-year operational lifetime. Waste data analytics were applied in this study for the UK in 5-year intervals, stemming from 2000 to 2039. Current practices for end of life waste management procedures have been analysed to create baseline scenarios. These scenarios have been used to explore potential waste management mitigation options for various materials and components such as reuse, remanufacture, recycling, and heat recovery from incineration. Six scenarios were then developed based on these waste management options, which have demonstrated the significant environmental benefits of such practices through quantification of waste reduction and greenhouse gas (GHG) emissions savings. For the 2015–2019 time period, over 35 kilotonnes of waste are expected to be generated annually. Overall waste is expected to increase over time to more than 1200 kilotonnes annually by 2039. Concrete is expected to account for the majority of waste associated with wind turbine decommissioning initially due to foundations for onshore turbines accounting for approximately 80% of their total weight. By 2035–2039, steel waste is expected to account for almost 50% of overall waste due to the emergence of offshore turbines, the foundations of which are predominantly made of steel.


Author(s):  
Himani Himani ◽  
Navneet Sharma

<p><span>This paper describes the design and implementation of Hardware in the Loop (HIL) system D.C. motor based wind turbine emulator for the condition monitoring of wind turbines. Operating the HIL system, it is feasible to replicate the actual operative conditions of wind turbines in a laboratory environment. This method simply and cost-effectively allows evaluating the software and hardware controlling the operation of the generator. This system has been implemented in the LabVIEW based programs by using Advantech- USB-4704-AE Data acquisition card. This paper describes all the components of the systems and their operations along with the control strategies of WTE such as Pitch control and MPPT. Experimental results of the developed simulator using the test rig are benchmarked with the previously verified WT test rigs developed at the Durham University and the University of Manchester in the UK by using the generated current spectra of the generator. Electric subassemblies are most vulnerable to damage in practice, generator-winding faults have been introduced and investigated using the terminal voltage. This wind turbine simulator can be analyzed or reconfigured for the condition monitoring without the requirement of actual WT’s.</span></p>


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0152033 ◽  
Author(s):  
Cerian Tatchley ◽  
Heather Paton ◽  
Emma Robertson ◽  
Jeroen Minderman ◽  
Nicholas Hanley ◽  
...  

Author(s):  
B. W. Byrne ◽  
G. T. Houlsby

In recent years there has been a worldwide increase in the pressure to develop sources of renewable energy. The UK government is committed to ensuring that ten percent of UK energy consumption will be supplied by renewables by the year 2010. Central to this commitment is the need to develop wind farms particularly in the offshore environment. Moving offshore will allow very large wind turbines capable of supplying 2 MW (first generation) to 5 MW (second generation) of power to be installed in large farms consisting of up to fifty or more turbines. In contrast to typical oil and gas structures the foundation may account for up to forty percent of the projected installed cost. The weight of each structure is very low, so the applied vertical load on the foundation will be small compared to the moment load derived from the wind and waves. Further, it will be necessary to have a single design that can be mass-produced over each site rather than have each foundation individually engineered. In combination these points lead to a very interesting engineering problem where the design of the foundation becomes crucial to the economics of the project. One solution is to use conventional piling. However, at some sites it may prove more economical to use shallow foundations, and, in particular suction installed skirted foundations [1]. It will be necessary to develop an adequate design framework for these no vel foundations under the relevant combinations of load so that the optimum structural configuration can be achieved. At Oxford University a program of research on skirted foundations has been underway for the last five years, and much progress has been made on the understanding of this type of foundation under combined loading. This progress has been in both experimental and theoretical areas. This paper explores various structural options that might be used for the wind turbine application. These different options lead to different loading conditions on the foundations. Experiments investigating these different loading conditions are explored. A theoretical approach that describes the experimental results in a way that can be implemented in typical structural analyses programs is outlined. Finally details of a major research program into developing the necessary design guidelines for foundations for offshore wind turbines is described.


2011 ◽  
Vol 22 (1) ◽  
pp. 49-64 ◽  
Author(s):  
J. M. Parks ◽  
K. S. Theobald

This paper explores perceptions of public engagement with information on renewable energy developments. It draws on a case study of proposals by a major supermarket chain to construct single wind turbines in two semi-urban locations in the UK, analysing data from interviews with key actors in the planning process and focus groups with local residents. The paper concludes that key actors often had high expectations of how local people should engage with information, and sometimes implied that members of the public who were incapable of filtering or processing information in an organised or targeted fashion had no productive role to play in the planning process. It shows how the specific nature of the proposals (single wind turbines in semi-urban locations proposed by a commercial private sector developer) shaped local residents’ information needs and concerns in a way that challenged key actors’ expectations of how the public should engage with information.


Author(s):  
Stuart Bell ◽  
Donald McGillivray ◽  
Ole W. Pedersen ◽  
Emma Lees ◽  
Elen Stokes

Three chapters of the book are not contained in the print version but can be found on the Online Resource Centre which accompanies the book, at www.oxfordtextbooks.co.uk/orc/bell9e/. The following short summaries indicate the scope of these chapters. This chapter looks at the legal protection and management of various features of the UK countryside—that is, its landscape, trees, forests, and hedgerows. This involves applying some controls considered earlier in the book, such as town and country planning law, but it also includes legal designations of areas of landscape value and the use of a range of tools including economic instruments, especially grants and subsidies to landowners....


2018 ◽  
Vol 82 ◽  
pp. 1261-1271 ◽  
Author(s):  
Lisa Ziegler ◽  
Elena Gonzalez ◽  
Tim Rubert ◽  
Ursula Smolka ◽  
Julio J. Melero

Sign in / Sign up

Export Citation Format

Share Document