Part 2: Remaking the Mass Image

2020 ◽  
pp. 249-268
Author(s):  
Sean Cubitt

‘Is it possible to differentiate between dominant and oppositional networks, for example? Or are they all so inextricably tied that even an analytical separation of them becomes useless?’ asks Arturo Escobar (2008: 11). Could a reconstituted form of image database exist? Could the mass image engender an oppositional agency that does not simply replicate the teleology of capital? If so, would there still exist a subject capable of responding?...

1995 ◽  
Vol 32 (4) ◽  
pp. 677
Author(s):  
M J Shin ◽  
G W Kim ◽  
T J Chun ◽  
W H Ahn ◽  
S K Balk ◽  
...  

Author(s):  
Jawad Muhammad ◽  
Yunlong Wang ◽  
Caiyong Wanga ◽  
Kunbo Zhang ◽  
Zhenan Sun

Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 33
Author(s):  
Xavier Garcia ◽  
Maria del Mar Sabaté ◽  
Jorge Aubets ◽  
Josep Maria Jansat ◽  
Sonia Sentellas

This paper aims to cover the main strategies based on ion mobility spectrometry (IMS) for the analysis of biological samples. The determination of endogenous and exogenous compounds in such samples is important for the understanding of the health status of individuals. For this reason, the development of new approaches that can be complementary to the ones already established (mainly based on liquid chromatography coupled to mass spectrometry) is welcomed. In this regard, ion mobility spectrometry has appeared in the analytical scenario as a powerful technique for the separation and characterization of compounds based on their mobility. IMS has been used in several areas taking advantage of its orthogonality with other analytical separation techniques, such as liquid chromatography, gas chromatography, capillary electrophoresis, or supercritical fluid chromatography. Bioanalysis is not one of the areas where IMS has been more extensively applied. However, over the last years, the interest in using this approach for the analysis of biological samples has clearly increased. This paper introduces the reader to the principles controlling the separation in IMS and reviews recent applications using this technique in the field of bioanalysis.


Author(s):  
Mei-Ling Shyu ◽  
Shu-Ching Chen ◽  
Min Chen ◽  
Chengcui Zhang ◽  
Kanoksri Sarinnapakorn

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Goodwin ◽  
Sanket Padmanabhan ◽  
Sanchit Hira ◽  
Margaret Glancey ◽  
Monet Slinowsky ◽  
...  

AbstractWith over 3500 mosquito species described, accurate species identification of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open-set problem with a detection algorithm for novel species. Closed-set classification of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed-set classification of 39 species produces a macro F1-score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild-caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region.


Sign in / Sign up

Export Citation Format

Share Document