How Prefrontal Cortex Works

Author(s):  
Stephen Grossberg

This chapter describes a unified theory of how the prefrontal cortex interacts with multiple brain regions to carry out the higher cognitive, emotional, and decision-making processes that define human intelligence, while also controlling actions to achieve valued goals. This predictive Adaptive Resonance Theory, or pART, model builds upon the foundation in earlier chapters. Prefrontal functions are often called executive functions. Executive functions regulate flexible and adaptive behaviors, notably in novel situations, while suppressing actions that are no longer appropriate, notably reflexive responses to current sensory inputs. Working memory is particularly involved in contextually appropriate behaviors. Prefrontal properties of desirability, availability, credit assignment, category learning, and feature-based attention are explained. These properties arise through interactions of orbitofrontal, ventrolateral prefrontal, and dorsolateral prefrontal cortices with inferotemporal cortex, perirhinal cortex, parahippocampal cortices; ventral bank of the principal sulcus, ventral prearcuate gyrus, frontal eye fields, hippocampus, amygdala, basal ganglia, hypothalamus, and visual cortical areas V1, V2, V3A, V4, MT, MST, LIP, and PPC. Model explanations include how the value of visual objects and events is computed, which objects and events cause desired consequences and which may be ignored as predictively irrelevant, and how to plan and act to realize these consequences, including how to selectively filter expected vs. unexpected events, leading to movements towards, and conscious perception of, expected events. Modeled processes include reinforcement learning and incentive motivational learning; object and spatial working memory dynamics; and category learning, including the learning of object categories, value categories, object-value categories, and sequence categories, or list chunks.

2018 ◽  
Vol 2 ◽  
pp. 239821281877217 ◽  
Author(s):  
Stephen Grossberg

Background: The prefrontal cortices play an essential role in cognitive-emotional and working memory processes through interactions with multiple brain regions. Methods: This article further develops a unified neural architecture that explains many recent and classical data about prefrontal function and makes testable predictions. Results: Prefrontal properties of desirability, availability, credit assignment, category learning, and feature-based attention are explained. These properties arise through interactions of orbitofrontal, ventrolateral prefrontal, and dorsolateral prefrontal cortices with the inferotemporal cortex, perirhinal cortex, parahippocampal cortices; ventral bank of the principal sulcus, ventral prearcuate gyrus, frontal eye fields, hippocampus, amygdala, basal ganglia, hypothalamus, and visual cortical areas V1, V2, V3A, V4, middle temporal cortex, medial superior temporal area, lateral intraparietal cortex, and posterior parietal cortex. Model explanations also include how the value of visual objects and events is computed, which objects and events cause desired consequences and which may be ignored as predictively irrelevant, and how to plan and act to realise these consequences, including how to selectively filter expected versus unexpected events, leading to movements towards, and conscious perception of, expected events. Modelled processes include reinforcement learning and incentive motivational learning; object and spatial working memory dynamics; and category learning, including the learning of object categories, value categories, object-value categories, and sequence categories, or list chunks. Conclusion: This article hereby proposes a unified neural theory of prefrontal cortex and its functions.


2002 ◽  
Vol 87 (1) ◽  
pp. 567-588 ◽  
Author(s):  
Kazuyoshi Takeda ◽  
Shintaro Funahashi

To examine what kind of information task-related activity encodes during spatial working memory processes, we analyzed single-neuron activity in the prefrontal cortex while two monkeys performed two different oculomotor delayed-response (ODR) tasks. In the standard ODR task, monkeys were required to make a saccade to the cue location after a 3-s delay, whereas in the rotatory ODR (R-ODR) task, they were required to make a saccade 90° clockwise from the cue location after the 3-s delay. By comparing the same task-related activities in these two tasks, we could determine whether such activities encoded the location of the visual cue or the direction of the saccade. One hundred twenty one neurons exhibited task-related activity in relation to at least one task event in both tasks. Among them, 41 neurons exhibited directional cue-period activity, most of which encoded the location of the visual cue. Among 56 neurons with directional delay-period activity, 86% encoded the location of the visual cue, whereas 13% encoded the direction of the saccade. Among 57 neurons with directional response-period activity, 58% encoded the direction of the saccade, whereas 35% encoded the location of the visual cue. Most neurons whose response-period activity encoded the location of the visual cue also exhibited directional delay-period activity that encoded the location of the visual cue as well. The best directions of these two activities were identical, and most of these response-period activities were postsaccadic. Therefore this postsaccadic activity can be considered a signal to terminate unnecessary delay-period activity. Population histograms encoding the location of the visual cue showed tonic sustained activation during the delay period. However, population histograms encoding the direction of the saccade showed a gradual increase in activation during the delay period. These results indicate that the transformation from visual input to motor output occurs in the dorsolateral prefrontal cortex. The analysis using population histograms suggests that this transformation occurs gradually during the delay period.


2005 ◽  
Vol 93 (6) ◽  
pp. 3027-3028 ◽  
Author(s):  
Xiao-Jing Wang

This essay looks at the historical significance of one APS classic paper that is freely available online: Funahashi S, Bruce CJ, and Goldman-Rakic PS. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 61: 331–349, 1989 ( http://jn.physiology.org/cgi/reprint/61/2/331 ).


2018 ◽  
Author(s):  
Emily S. Finn ◽  
Laurentius Huber ◽  
David C. Jangraw ◽  
Peter A. Bandettini

Working memory involves a series of functions: encoding a stimulus, maintaining or manipulating its representation over a delay, and finally making a behavioral response. While working memory engages dorsolateral prefrontal cortex (dlPFC), few studies have investigated whether these subfunctions are localized to different cortical depths in this region, and none have done so in humans. Here, we use high-resolution functional MRI to interrogate the layer specificity of neural activity during different epochs of a working memory task in dlPFC. We detect activity timecourses that follow the hypothesized patterns: superficial layers are preferentially active during the delay period, while deeper layers are preferentially active during the response. Results demonstrate that layer-specific fMRI can be used in higher-order brain regions to non-invasively map cognitive information processing along cortical circuitry in humans.


2019 ◽  
Author(s):  
Sanjeev B. Khanna ◽  
Jonathan A. Scott ◽  
Matthew A. Smith

AbstractActive vision is a fundamental process by which primates gather information about the external world. Multiple brain regions have been studied in the context of simple active vision tasks in which a visual target’s appearance is temporally separated from saccade execution. Most neurons have tight spatial registration between visual and saccadic signals, and in areas such as prefrontal cortex (PFC) some neurons show persistent delay activity that links visual and motor epochs and has been proposed as a basis for spatial working memory. Many PFC neurons also show rich dynamics, which have been attributed to alternative working memory codes and the representation of other task variables. Our study investigated the transition between processing a visual stimulus and generating an eye movement in populations of PFC neurons in macaque monkeys performing a memory guided saccade task. We found that neurons in two subregions of PFC, the frontal eye fields (FEF) and area 8Ar, differed in their dynamics and spatial response profiles. These dynamics could be attributed largely to shifts in the spatial profile of visual and motor responses in individual neurons. This led to visual and motor codes for particular spatial locations that were instantiated by different mixtures of neurons, which could be important in PFC’s flexible role in multiple sensory, cognitive, and motor tasks.New and NoteworthyA central question in neuroscience is how the brain transitions from sensory representations to motor outputs. The prefrontal cortex contains neurons that have long been implicated as important in this transition and in working memory. We found evidence for rich and diverse tuning in these neurons, that was often spatially misaligned between visual and saccadic responses. This feature may play an important role in flexible working memory capabilities.


2021 ◽  
Author(s):  
Sihai Li ◽  
Christos Constantinidis ◽  
Xue-Lian Qi

Abstract The dorsolateral prefrontal cortex (dlPFC) plays a critical role in spatial working memory and its activity predicts behavioral responses in delayed response tasks. Here, we addressed if this predictive ability extends to other working memory tasks and if it is present in other brain areas. We trained monkeys to remember the location of a stimulus and determine whether a second stimulus appeared at the same location or not. Neurophysiological recordings were performed in the dorsolateral prefrontal cortex and posterior parietal cortex (PPC). We hypothesized that random drifts causing the peak activity of the network to move away from the first stimulus location and toward the location of the second stimulus would result in categorical errors. Indeed, for both areas, in nonmatching trials, when the first stimulus appeared in a neuron’s preferred location, the neuron showed significantly higher firing rates in correct than in error trials; and vice versa, when the first stimulus appeared at a nonpreferred location, activity in error trials was higher than in correct. The results indicate that the activity of both dlPFC and PPC neurons is predictive of categorical judgments of information maintained in working memory, and neuronal firing rate deviations are revealing of the contents of working memory.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Mario Altamura ◽  
Terry E. Goldberg ◽  
Brita Elvevåg ◽  
Tom Holroyd ◽  
Frederick W. Carver ◽  
...  

During the anticipation of task demands frontal control is involved in the assembly of stimulus-response mappings based on current goals. It is not clear whether prefrontal modulations occur in higher-order cortical regions, likely reflecting cognitive anticipation processes. The goal of this paper was to investigate prefrontal modulation during anticipation of upcoming working memory demands as revealed by magnetoencephalography (MEG). Twenty healthy volunteers underwent MEG while they performed a variation of the Sternberg Working Memory (WM) task. Beta band (14–30 Hz) SAM (Synthetic Aperture Magnetometry) analysis was performed. During the preparatory periods there was an increase in beta power (event-related synchronization) in dorsolateral prefrontal cortex (DLPFC) bilaterally, left inferior prefrontal gyrus, left parietal, and temporal areas. Our results provide support for the hypothesis that, during preparatory states, the prefrontal cortex is important for biasing higher order brain regions that are going to be engaged in the upcoming task.


Sign in / Sign up

Export Citation Format

Share Document