neuronal ensemble
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 25)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Raul Ramos ◽  
Chi-Hong Wu ◽  
Gina G Turrigiano

Generalization is an adaptive mnemonic process in which an animal can leverage past learning experiences to navigate future scenarios, but overgeneralization is a hallmark feature of anxiety disorders. Therefore, understanding the synaptic plasticity mechanisms that govern memory generalization and its persistence is an important goal. Here, we demonstrate that strong CTA conditioning results in a long-lasting generalized aversion that persists for at least two weeks. Using brain slice electrophysiology and activity-dependent labeling of the conditioning-active neuronal ensemble within the gustatory cortex, we find that strong CTA conditioning induces a long-lasting increase in synaptic strengths that occurs uniformly across superficial and deep layers of GC. Repeated exposure to salt, the generalized tastant, causes a rapid attenuation of the generalized aversion that correlates with a reversal of the CTA-induced increases in synaptic strength. Unlike the uniform strengthening that happens across layers, reversal of the generalized aversion results in a more pronounced depression of synaptic strengths in superficial layers. Finally, the generalized aversion and its reversal do not impact the acquisition and maintenance of the aversion to the conditioned tastant (saccharin). The strong correlation between the generalized aversion and synaptic strengthening, and the reversal of both in superficial layers by repeated salt exposure, strongly suggests that the synaptic changes in superficial layers contribute to the formation and reversal of the generalized aversion. In contrast, the persistence of synaptic strengthening in deep layers correlates with the persistence of CTA. Taken together, our data suggest that layer-specific synaptic plasticity mechanisms separately govern the persistence and generalization of CTA memory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hefei Guan ◽  
Steven J. Middleton ◽  
Takafumi Inoue ◽  
Thomas J. McHugh

AbstractIn the hippocampal circuit CA3 input plays a critical role in the organization of CA1 population activity, both during learning and sleep. While integrated spatial representations have been observed across the two hemispheres of CA1, these regions lack direct connectivity and thus the circuitry responsible remains largely unexplored. Here we investigate the role of CA3 in organizing bilateral CA1 activity by blocking synaptic transmission at CA3 terminals through the inducible transgenic expression of tetanus toxin. Although the properties of single place cells in CA1 were comparable bilaterally, we find a decrease of ripple synchronization between left and right CA1 after silencing CA3. Further, during both exploration and rest, CA1 neuronal ensemble activity is less coordinated across hemispheres. This included degradation of the replay of previously explored spatial paths in CA1 during rest, consistent with the idea that CA3 bilateral projections integrate activity between left and right hemispheres and orchestrate bilateral hippocampal coding.


2021 ◽  
pp. 100297
Author(s):  
James I. Matchynski ◽  
Rayyan Manwar ◽  
Karl J. Kratkiewicz ◽  
Rajtarun Madangopal ◽  
Veronica A. Lennon ◽  
...  

2021 ◽  
Author(s):  
Kentaro Tao ◽  
Myung Chung ◽  
Akiyuki Watarai ◽  
Ziyan Huang ◽  
Mu-Yun Wang ◽  
...  

The ability to remember conspecifics is critical for adaptive cognitive functioning and social communication, and impairments of this ability are hallmarks of autism spectrum disorders (ASDs). Although hippocampal ventral CA1 (vCA1) neurons are known to store social memories, how their activities are coordinated remains unclear. Here we show that vCA1 social memory neurons, characterized by enhanced activity in response to memorized individuals, were preferentially reactivated during sharp-wave ripples (SPW-Rs). Spike sequences of these social replays reflected the temporal orders of neuronal activities within theta cycles during social experiences. In ASD model Shank3 knockout mice, the proportion of social memory neurons was reduced, and neuronal ensemble spike sequences during SPW-Rs were disrupted, which correlated with impaired discriminatory social behavior. These results suggest that SPW-R-mediated sequential reactivation of neuronal ensembles is a canonical mechanism for coordinating hippocampus-dependent social memories and its disruption underlies the pathophysiology of social memory defects associated with ASD.


2021 ◽  
Vol 2021 (6) ◽  
pp. 063501
Author(s):  
Shun Kimura ◽  
Keisuke Ota ◽  
Koujin Takeda

2020 ◽  
Author(s):  
P. Meenakshi ◽  
S. Kumar ◽  
J. Balaji

AbstractImmediate early genes (IEGs) are widely used as a marker for neuronal plasticity. Here, we model the dynamics of IEG expression as a consecutive, irreversible first order reaction with a limiting substrate. We show that such a model, together with two-photon in vivo imaging of IEG expression, can be used to identify distinct neuronal subsets representing multiple memories. We image retrosplenial cortex (RSc) of cFOS-GFP transgenic mice to follow the dynamics of cellular changes resulting from both seizure and contextual fear conditioning behaviour. The analytical expression allowed us to segregate the neurons based on their temporal response to one specific behavioural event, thereby improving the sensitivity of detecting plasticity related neurons. This enables us to establish representation of context in RSc at the cellular scale following memory acquisition. Thus, we obtain a general method which distinguishes neurons that took part in multiple temporally separated events, by measuring fluorescence from individual neurons in live mice.SummaryIdentifying neuronal ensemble associated with different memories is vital in modern neuroscience. Meenakshi et al model and use the temporal expression dynamics of IEGs rather than thresholded intensities of the probes to identify the neurons encoding different memory in vivo.Graphical abstract


Author(s):  
Tzitzitlini Alejandre-García ◽  
Samuel Kim ◽  
Jesús Pérez-Ortega ◽  
Rafael Yuste

AbstractNeuronal ensembles are coactive groups of cortical neurons, found in both spontaneous and evoked activity, which can mediate perception and behavior (Cossart et al., 2003; Buzsáki, 2010; Carrillo-Reid et al., 2019; Marshel et al., 2019). To understand the mechanism that lead to the formation of neuronal ensembles, we generated optogenetically artificial photo-ensembles in layer 2/3 pyramidal neurons in brain slices of mouse visual cortex from both sexes, replicating an optogenetic protocol to generate ensembles in vivo by simultaneous coactivation of neurons (Carrillo-Reid et al. 2016). Using whole-cell voltage-clamp recordings from individual neurons and connected pairs, we find that synaptic properties of photostimulated were surprisingly unaffected, without any signs of Hebbian plasticity. However, extracellular recordings revealed that photostimulation induced strong increases in spontaneous action potential activity. Using perforated patch clamp recordings, we find increases in neuronal excitability, accompanied by increases in membrane resistance and a reduction in spike threshold. We conclude that the formation of neuronal ensemble by photostimulation is mediated by cell-intrinsic changes in excitability, rather than by Hebbian synaptic plasticity or changes in local synaptic connectivity. We propose an “iceberg” model, by which increased neuronal excitability makes subthreshold connections become suprathreshold, increasing the functional effect of already existing synapses and generating a new neuronal ensemble.


2020 ◽  
Author(s):  
Louisa Kane ◽  
Marco Venniro ◽  
Richard Quintana‐Feliciano ◽  
Rajtarun Madangopal ◽  
F. Javier Rubio ◽  
...  

2020 ◽  
Vol 117 (20) ◽  
pp. 11076-11084 ◽  
Author(s):  
Jennifer L. Scribner ◽  
Eric A. Vance ◽  
David S. W. Protter ◽  
William M. Sheeran ◽  
Elliott Saslow ◽  
...  

Pair-bond formation depends vitally on neuromodulatory signaling within the nucleus accumbens, but the neuronal dynamics underlying this behavior remain unclear. Using 1-photon in vivo Ca2+ imaging in monogamous prairie voles, we found that pair bonding does not elicit differences in overall nucleus accumbens Ca2+ activity. Instead, we identified distinct ensembles of neurons in this region that are recruited during approach to either a partner or a novel vole. The partner-approach neuronal ensemble increased in size following bond formation, and differences in the size of approach ensembles for partner and novel voles predict bond strength. In contrast, neurons comprising departure ensembles do not change over time and are not correlated with bond strength, indicating that ensemble plasticity is specific to partner approach. Furthermore, the neurons comprising partner and novel-approach ensembles are nonoverlapping while departure ensembles are more overlapping than chance, which may reflect another key feature of approach ensembles. We posit that the features of the partner-approach ensemble and its expansion upon bond formation potentially make it a key neuronal substrate associated with bond formation and maturation.


Sign in / Sign up

Export Citation Format

Share Document