Functional Group Oxidation and Reduction

Author(s):  
Douglass F. Taber

Debabrata Maiti of the Indian Institute of Technology Bombay found (Chem. Commun. 2012, 48, 4253) that the relatively inexpensive Pd(OAc)2 effectively catalyzed the decarbonylation of an aldehyde 1 to the hydrocarbon 2. Hui Lou of Zhejiang University used (Adv. Synth. Catal. 2011, 353, 2577) a Mo catalyst to effect reduction of the ester 3 to the hydrocarbon 4, with retention of all the skeletal carbons. Jon T. Njardarson of the University of Arizona showed (Chem. Commun. 2012, 48, 7844) that the allylic ether 5 could be reduced with high regioselectivity to give 6. José Barluenga and Carlos Valdés of the Universidad de Oviedo effected (Angew. Chem. Int. Ed. 2012, 51, 5950) the direct conversion of a ketone 7 to the azide 8. Although no cyclic ketones were included in the examples, there is a good chance that this will be the long-sought diastereoselective reduction of a cyclohexanone to the equatorial amine. Hideo Nagashima of Kyushu University reduced (Chem. Lett. 2012, 41, 229) the acid 9 directly to the aldehyde 1 using a ruthenium catalyst with the bis silane 10. Georgii I. Nikonov of Brock University described (Adv. Synth. Catal. 2012, 354, 607) a similar Ru-mediated silane reduction of an acid chloride to the aldehyde. Professor Nagashima used (Angew. Chem. Int. Ed. 2012, 51, 5363) his same Ru catalyst to reduce the ester 11 to the protected amine 12. Shmaryahu Hoz of Bar-Ilan University used (J. Org. Chem. 2012, 77, 4029) photostimulation to promote the SmI2-mediated reduction of a nitrile 13 to the amine 14. Bakthan Singaram of the University of California, Santa Cruz effected (J. Org. Chem. 2012, 77, 221) the same transformation with InCl3/NaBH4. David J. Procter of the University of Manchester described (J. Org. Chem. 2012, 77, 3049) what promises to be a general method for activating Sm metal to form SmI2. Mark T. Hamann of the University of Mississippi directly reduced (J. Org. Chem. 2012, 77, 4578) the nitro group of 15 to the alkylated amine 16. Cleanly oxidizing aromatic methyl groups to the level of the aldehyde without overoxidation has been a challenge.

Author(s):  
Douglass F. Taber

Sisir K. Mandal of Asian Paints R&T Centre, Mumbai used (Tetrahedron Lett. 2013, 54, 530) a Ru catalyst to couple 2 with an electron-rich arene 1 to give 3. Jun-ichi Yoshida of Kyoto University (J. Am. Chem. Soc. 2013, 135, 5000) and John F. Hartwig of the University of California, Berkeley (J. Am. Chem. Soc. 2013, 135, 8480) also reported direct amination protocols. Tommaso Marcelli of the Politecnico di Milano and Michael J. Ingleson of the University of Manchester effected (J. Am. Chem. Soc. 2013, 135, 474) the electrophilic borylation of the aniline 4 to give 5. The regioselectivity of Ir-catalyzed borylation (J. Am. Chem. Soc. 2013, 135, 7572; Org. Lett. 2013, 15, 140) is complementary to the electrophilic process. Professor Hartwig carried (Angew. Chem. Int. Ed. 2013, 52, 933) the borylated product from 6 onto Ni-mediated coupling to give the alkylated product 7. Weiping Su of the Fujian Institute of Research on the Structure of Matter devised (Org. Lett. 2013, 15, 1718) an intriguing Pd-mediated oxidative coupling of nitroethane 9 with 8 to give 10. The coupling is apparently not proceeding via nitroethylene. Peiming Gu of Ningxia University developed (Org. Lett. 2013, 15, 1124) an azide-based cleavage that converted the aldehyde 11 into the formamide 13. Zhong-Quan Liu of Lanzhou University showed (Tetrahedron Lett. 2013, 54, 3079) that an aromatic carboxylic acid 14 could be oxidatively decarboxylated to the chloride 15. Gérard Cahiez of the Université Paris 13 found (Adv. Synth. Catal. 2013, 355, 790) mild Cu-catalyzed conditions for the reductive decarboxylation of aromatic carboxylic acids, and Debabrata Maiti of the Indian Institute of Technology, Mumbai found (Chem. Commun. 2013, 49, 252) Pd-mediated conditions for the dehydroxymethylation of benzyl alcohols (neither illustrated). Pravin R. Likhar of the Indian Institute of Chemical Technology prepared (Adv. Synth. Catal. 2013, 355, 751) a Cu catalyst that effected Castro-Stephens coupling of 16 with 17 at room temperature. Arturo Orellana of York University (Chem. Commun. 2013, 49, 5420) and Patrick J. Walsh of the University of Pennsylvania (Org. Lett. 2013, 15, 2298) showed that a cyclopropanol 20 can couple with an aryl halide 19 to give 21.


Author(s):  
Douglass F. Taber

Shazia Zaman of the University of Canterbury and Andrew D. Abell of the University of Adelaide devised (Tetrahedron Lett. 2011, 52, 878) a polyethylene glycol-tagged Ru catalyst that is effective for alkene metathesis in aqueous mixtures, cyclizing 1 to 2. Bruce H. Lipshutz of the University of California, Santa Barbara developed (J. Org. Chem. 2011, 76, 4697, 5061) an alternative approach for aqueous methathesis, and also showed that CuI is an effective cocatalyst, converting 3 to 5. Christian Slugovc of the Graz University of Technology showed (Tetrahedron Lett. 2011, 52, 2560) that cross metathesis of the diene 6 with ethyl acrylate 7 could be carried out with very low catalyst loadings. Robert H. Grubbs of the California Institute of Technology designed (J. Am. Chem. Soc. 2011, 133, 7490) a Ru catalyst for the ethylenolysis of 9 to 10 and 11. Thomas R. Hoye of the University of Minnesota showed (Angew. Chem. Int. Ed. 2011, 50, 2141) that the allyl malonate linker of 12 was particularly effective in promoting relay ring-closing metathesis to 13. Amir H. Hoveyda of Boston College designed (Nature 2011, 471, 461) a Mo catalyst that mediated the cross metathesis of 14 with 15 to give 16 with high Z selectivity. Professor Grubbs designed (J. Am. Chem. Soc. 2011, 133, 8525) a Z selective Ru catalyst. Damian W. Young of the Broad Institute demonstrated (J. Am. Chem. Soc. 2011, 133, 9196) that ring closing metathesis of 17 followed by desilylation also led to the Z product, 18. Thomas E. Nielsen of the Technical University of Denmark devised (Angew. Chem. Int. Ed. 2011, 50, 5188) a Ru-mediated cascade process, effecting ring-closing metathesis of 19, followed by alkene migration to the enamide, and finally diastereoselective cyclization to 20. In the course of a total synthesis of (–)-goniomitine, Chisato Mukai of Kanazawa University showed (Org. Lett. 2011, 13, 1796) that even the very congested alkene of 22 smoothly participated in cross metathesis with 21 to give 23. En route to leustroducsin B, Jeffrey S. Johnson of the University of North Carolina protected (Org. Lett. 2011, 13, 3206) an otherwise incompatible terminal alkyne as its Co complex 24, allowing ring closing methathesis to 25.


Author(s):  
Douglass F. Taber

Adriaan J. Minnaard and Ben L. Feringa of the University of Groningen devised (J. Am. Chem. Soc. 2010, 132, 14349) what promises to be a general strategy for the construction of enantiomerically pure cyclopropanes, based on conjugate addition to acceptors such as 1 . X. Peter Zhang of the University of South Florida developed (J. Am. Chem. Soc. 2010, 132, 12796) a Co catalyst for the enantioselective cyclopropanation of α-olefins such as 3. Seiji Iwasa of Toyohashi University of Technology designed (Angew. Chem. Int. Ed. 2010, 49, 8439) a resin-bound Ru catalyst that could be used repeatedly for the enantioselective cyclization of the ester 6. Rai-Shung Lin of National Tsing-Hua University showed (Angew. Chem. Int. Ed. 2010, 49, 9891) that a gold catalyst could expand the alkyne 8 to the cyclobutene 9. Takao Ikariya of the Tokyo Institute of Technology reported (J. Am. Chem. Soc. 2010, 132, 16637) a detailed study of the enantioselective conjugate addition of malonate 11 to cyclopentenone 10. Vladimir A. D’yakonov of the Russian Academy of Sciences, Ufa, showed (Tetrahedron Lett. 2010, 51, 5886) that a cyclic alkyne 13 could be annulated to the cyclopentenone 14. Shunichi Hashimoto of Hokkaido University also designed (Angew. Chem. Int. Ed. 2010, 49, 6979) a resin-bound Rh catalyst that could also be used repeatedly for the enantioselective cyclization of the ester 15. Tushar Kanti Chakraborty of the Central Drug Research Institute used (Tetrahedron Lett. 2010, 51, 4425) Ti(III) to mediate the diastereoselective cyclization of 17 to 18. Alexandre Alexakis of the University of Geneva extended (Synlett 2010, 1694) enantioselective conjugate addition of isopropenyl to the more difficult enone 19. Joseph P. A. Harrity of the University of Sheffield showed (Org. Lett. 2010, 12, 4832) that Pd could catalyze the rearrangement of 21 to 22. Strategies for the controlled construction of polycyclic ring systems are also important. Günter Helmchen of the Universität Heidelberg showed (J. Org. Chem. 2010, 75, 7917) that 23 was efficiently cyclized to the diene with Pt catalyst. The reaction could be carried out in the presence of the dienophile 24 to give 25 directly.


Author(s):  
Douglass F. Taber

Kiyotomi Kaneda of Osaka University devised (Angew. Chem. Int. Ed. 2010, 49, 5545) gold nanoparticles that efficiently deoxygenated an epoxide 1 to the alkene 2. Robert G. Bergman of the University of California, Berkeley, and Jonathan A. Ellman, now of Yale University, reported (J. Am. Chem. Soc. 2010, 132, 11408) a related protocol for deoxygenating 1,2-diols. Dennis A. Dougherty of Caltech established (Org. Lett. 2010, 12, 3990) that an acid chloride 3 could be reduced to the phosphonate 4. Pei-Qiang Huang of Xiamen University effected (Synlett 2010, 1829) reduction of an amide 5 by activation with Tf2O followed by reduction with NaBH4. André B. Charette of the Université de Montreal described (J. Am. Chem. Soc. 2010, 132, 12817) parallel results with Tf2O/Et3SiH. David Milstein of the Weizmann Institute of Science devised (J. Am. Chem. Soc. 2010, 132, 16756) a Ru catalyst for the alternative reduction of an amide 7 to the amine 8 and the alcohol 9. Shi-Kai Tian of the University of Science and Technology of China effected (Chem. Commun. 2010, 46, 6180) reduction of a benzylic sulfonamide 10 to the hydrocarbon 11. Thirty years ago, S. Yamamura of Nagoya University reported (Chem. Commun. 1967, 1049) the efficient reduction of a ketone to the corresponding methylene with Zn/HCl. Hirokazu Arimoto of Tohoku University established (Tetrahedron Lett. 2010, 51, 4534) that a modified Zn/TMSCl protocol could be used following ozonolysis to effect conversion of an alkene 12 to the methylene 13. José Barluenga and Carlos Valdés of the Universidad de Oviedo effected (Angew. Chem. Int. Ed. 2010, 49, 4993) reduction of a ketone to the ether 16 by way of the tosylhydrazone 14. Kyoko Nozaki and Makoto Yamashita of the University of Tokyo and Dennis P. Curran of the University of Pittsburgh found (J. Am. Chem. Soc. 2010, 132, 11449) that the hydride 18 (actually a complex dimer) could effect the direct reduction of a halide 17 and also function as the hydrogen atom donor for free radical reduction and as the hydride donor for the Pd-mediated reduction of an aryl halide.


2012 ◽  
Vol 45 (01) ◽  
pp. 151-154

As noted in the October issue ofPS, G. Bingham Powell, Jr., the Marie E .and Joseph C. Wilson Professor of Political Science at the University of Rochester, became APSA's 108th president on September 4, 2011, at the close of the APSA Annual Meeting. Eight new members of the APSA council were elected fall 2011. The new members are Paul Gronke, Reed College; Ange-Marie Hancock, University of Southern California; David A. Lake, University of California, San Diego; Taeku Lee, University of California, Berkeley; Kenneth J. Meier, Texas A&M University; Kathleen Thelen, Massachusetts Institute of Technology; Stephen M. Walt, Harvard University; and Angelia R. Wilson, University of Manchester.


2010 ◽  
Vol 21 (1) ◽  
pp. 75 ◽  
Author(s):  
R. J. Stalker ◽  
E. Nicole Meyer

Richard E. Meyer was a mathematical physicist who specialized in the physics of fluid motion. His research career began with his doctorate at the Swiss Federal Institute of Technology, followed by a brief period of employment with the English Ministry of Aircraft Production. He then went to the University of Manchester, where he made his first major research contributions. In 1953 he left Manchester for the University of Sydney. By this time he was established as a theoretical supersonic aerodynamicist and he continued with this work as well as assuming the responsibilities of a research group leader. In 1957 he went to the USA and remained there for the rest of his life, essentially abandoning supersonic aerodynamics in favour of water-wave theory. His work was marked by an ability to analyse the approach to limiting conditions, or singularities, in models of physical processes. From the 1970s, he focused increasingly on developing the mathematical aspects of his work.


Author(s):  
Tristan H. Lambert

Haifeng Du at the Chinese Academy of Sciences reported (J. Am. Chem. Soc. 2013, 135, 6810) the borane-catalyzed asymmetric hydrogenation of imine 1 to 2 using the diene 3 as a chiral ligand for boron. A single-enzyme cascade for the reductive transam­ination of acetophenone 4 with amine 5 to produce enantiopure sec-phenethylamine 6 was developed (Chem. Commun. 2013, 49, 161) by Per Berglund at the KTH Royal Institute of Technology in Sweden. A group at Boehringer Ingelheim in Ridgefield, Connecticut, led by Jonathan T. Reeves, disclosed (J. Am. Chem. Soc. 2013, 135, 5565) a procedure for the addition of DMF anion to N-sulfinyl imine 7 to furnish tert-leucine amide 8 with high diastereoselectivity. The tertiary carbinamine 10 was synthesized (Org. Lett. 2013, 15, 34) via the carbolithiation/rearrangement of vinyl­urea 9 as reported by Jonathan Clayden at the University of Manchester. Gregory C. Fu at Caltech reported (Angew. Chem. Int. Ed. 2013, 52, 2525) that the chiral phosphine 12 catalyzed the enantioselective addition of trifluoroacetamide to allene 11 to produce γ-amino ester 13 in enantioenriched form. Adeline Vallribera at the Autonomous University of Barcelona found (Org. Lett. 2013, 15, 1448) that a euro­pium pybox complex effected the highly enantioselective α-amination of β-ketoester 14 to generate 15 on the way to the Parkinson’s disease co-drug L-carbidopa. Hisashi Yamamoto at the University of Chicago and Chubu University reported (J. Am. Chem. Soc. 2013, 135, 3411) that a halfnium(IV) complex of the bishydroxamic acid 17 catalyzed the enantioselective epoxidation of the tertiary homoallylic alcohol 16 to 18. The rearrangement of the allylic carbonate 19 to produce allyl ether 21 with high ee under iridium catalysis in the presence of ligand 20 was disclosed (Org. Lett. 2013, 15, 512) by Hyunsoo Han at the University of Texas, San Antonio. The asymmetric vinylogous aldol reaction of 3-methyl-2-cyclohexen-1-one 22 and α-keto ester 23 to furnish tertiary carbinol 25 using the bifunctional catalyst 24 was developed (Org. Lett. 2013, 15, 220) by Paolo Melchiorre at ICREA and ICIQ in Spain.


Author(s):  
Douglass F. Taber

Shuichi Nakamura of the Nagoya Institute of Technology reduced (Angew. Chem. Int. Ed. 2011, 50, 2249) the α-oxo ester 1 to 2 with high ee. Günter Helmchen of the Universität-Heidelberg optimized (J. Am. Chem. Soc. 2011, 133, 2072) the Ir*-catalyzed rearrangement of 3 to the allylic alcohol 4. D. Tyler McQuade of Florida State University effected (J. Am. Chem. Soc. 2011, 133, 2410) the enantioselective allylic substitution of 5 to give the secondary allyl boronate, which was then oxidized to 6. Kazuaki Kudo of the University of Tokyo developed (Org. Lett. 2011, 13, 3498) the tandem oxidation of the aldehyde 7 to the α-alkoxy acid 8. Takashi Ooi of Nagoya University prepared (Synlett 2011, 1265) the secondary amine 10 by the enantioselective addition of an aniline to the nitroalkene 9. Yixin Lu of the National University of Singapore assembled (Org. Lett. 2011, 13, 2638) the α-quaternary amine 13 by the addition of the aldehyde 11 to the azodicarboxylate 10. Chan-Mo Yu of Sungkyunkwan University added (Chem. Commun. 2011, 47, 3811) the enantiomerically pure 2-borylbutadiene 15 to the aldehyde 14 to give 16 in high ee. Because the allene is readily dragged out to the terminal alkyne, this is also a protocol for the enantioselective homopropargylation of an aldehyde. Lin Pu of the University of Virginia devised (Angew. Chem. Int. Ed. 2011, 50, 2368) a protocol for the enantioselective addition of 17 to the aldehyde 18 to give 19. Xiaoming Feng of Sichuan University developed (Angew. Chem. Int. Ed. 2011, 50, 2573) a Mg catalyst for the enantioselective addition of 21 to the α-oxo ester 20. Tomonori Misaka and Takashi Sugimura of the University of Hyogo added (J. Am. Chem. Soc. 2011, 133, 5695) 23 to 24 to give the Z-amide 25 in high ee. Marc L. Snapper and Amir H. Hoveyda of Boston College developed (J. Am. Chem. Soc. 2011, 133, 3332) a Cu catalyst for the enantioselective allylation of the imine 26. Jonathan Clayden of the University of Manchester effected (Org. Lett. 2010, 12, 5442) the enantioselective rearrangement of the amide 29 to the α-quaternary amine 30.


Author(s):  
Douglass Taber

To assemble the framework of the cytotoxic macrolide Amphidinolide X 3, Fèlix Urpí and Jaume Vilarrasa of the Universitat de Barcelona devised (Organic Lett. 2008, 10, 5191) the ring-closing metathesis of the alkenyl silane 1. No Ru catalyst was effective, but the Schrock Mo catalyst worked well. In the course of a synthesis of (-)-Dactylolide 6, Michael P. Jennings of the University of Alabama offered (J. Org. Chem. 2008, 73, 5965) a timely reminder of the particular reactivity of allylic alcohols in ring-closing metathesis. The cyclization of 4 to 5 proceeded smoothly, but attempted ring closing of the corresponding bis silyl ether failed. Polyenes such as ( + )-Cytotrienin A 8 are notoriously unstable. It is remarkable that Yujiro Hayashi of the Tokyo University of Science could (Angew. Chem. Int. Ed. 2008, 47, 6657) assemble the triene of 8 by the ring-closing metathesis of the highly functionalized precursor 7. Bicyclo [2.2.2] structures such as 9 are readily available by the addition of, in this case, methyl acrylate to an enantiomerically-pure 2-methylated dihydropyridine. André B. Charette of the Université de Montréal found (J. Am. Chem. Soc. 2008, 130, 13873) that 9 responded well to ring-opening/ring-closing metathesis, to give the octahydroquinoline 10. Functional group manipulation converted 10 into the Clavelina alkaloid ( + )-Lepadin B 11. The construction of trisubstituted alkenes by ring-closing metathesis can be difficult, and medium rings with their transannular strain are notoriously challenging to form. Nevertheless, Karl-Heinz Altmann of the ETH Zürich was able (Angew. Chem. Int. Ed. 2008, 47, 10081), using the H2 catalyst, to cyclize 12 to cyclononene 13, the precursor to the Xenia lactone ( + )-Blumiolide C 14. It is noteworthy that these fi ve syntheses used four different metathesis catalysts in the key alkene forming step. For the cyclization of 7, the use of the Grubbs first generation catalyst G1, that couples terminal alkenes but tends not to interact with internal alkenes, was probably critical to success.


Author(s):  
Douglass F. Taber

There have been several significant advances in N-alkylation using alcohols. Matthias Beller of Universität Rostock devised (Angew. Chem. Int. Ed. 2010, 49, 8126) a Ru catalyst for the amination of secondary and benzylic primary alcohols with ammonia. Dieter Vogt of the Eindhoven University of Technology reported (Angew. Chem. Int. Ed. 2010, 49, 8130) related transformations. Pei-Qiang Huang of Xiamen University showed (Chem. Commun. 2010, 46, 7834) that debenzylation of 3 in methanol led to the N-methyl amine 4. Parallel results have been reported with Ir (J. Am. Chem. Soc. 2010, 132, 15108), Au (Chem. Eur. J. 2010, 16, 13965), and Cu (Chem. Lett. 2010, 39, 1182). Peter J. Scammells of Monash University found (J. Org. Chem. 2010, 75, 4806) that demethylation of an N-oxide could be effected with Fe powder. Yao Fu and Qingxiang Guo of the University of Science and Technology of China N-vinylated (Tet. Lett. 2010, 51, 5476) a sulfonamide 7 with vinyl acetate and a Pd catalyst. Acyl amides could also be N-vinylated under these conditions. Hirokazu Urabe of the Tokyo Institute of Technology reported (Org. Lett. 2010, 12, 4137) that the stereodefined secondary sulfonamide of 9 could be displaced by an internal nucleophile, to give the product 11 with inversion of absolute configuration. Teruo Umemoto of IM&T Research devised (J. Am. Chem. Soc. 2010, 132, 18199) the remarkable fluorinating agent 13. In addition to converting secondary alcohols to the corresponding fluorides and ketones to gem-difluorides, 13 cleanly converted the carboxylic acids of 12 to trifluoromethyl groups. Paul G. Williard of Brown University demonstrated (Org. Lett. 2010, 12, 5378) that LDA converted an allyl ether 15 specifically to the (Z)-propenyl ether 16. Phil Lee Ho of Kangwon National University and Sunggak Kim of Nanyang Technological University could add (Angew. Chem. Int. Ed. 2010, 49, 6806) a phosphate to an alkyne 17 to make either the less substituted or the more substituted enol phosphate. Professor Kim reported (J. Org. Chem. 2010, 75, 7928) similar results with the addition of carboxylic acids.


Sign in / Sign up

Export Citation Format

Share Document