C–N Ring Construction: The Hattori Synthesis of (+)-Spectaline

Author(s):  
Douglass F. Taber

Magnus Rueping of RWTH Aachen University found (Chem. Commun. 2015, 51, 2111) that under Fe catalysis, a Grignard reagent would couple with the iodoazetidine 1 to give the substituted azetidine 2. Timothy F. Jamison of MIT established (Chem. Eur. J. 2015, 21, 7379) a protocol for converting 3, readily available from commercial homoserine lactone, to the alkylated azetidine 4. Long-Wu Ye of Xiamen University used (Chem. Commun. 2015, 51, 2126) a gold catalyst to cyclize 5, readily prepared in high ee, to the versatile ene sulfonamide 6. Chang- Hua Ding and Xue-Long Hou of the Shanghai Institute of Organic Chemistry added (Angew. Chem. Int. Ed. 2015, 54, 1604) the racemic aziridine 7 to the enone 8 to give the pyrrolidine 9 in high ee. Arumugam Sudalai of the National Chemical Laboratory employed (J. Org. Chem. 2015, 80, 2024) proline as an organocatalyst to mediate the addition of 11 to 10, leading to the pyrrolidine 12. Aaron D. Sadow of Iowa State University developed (J. Am. Chem. Soc. 2015, 137, 425) a Zr catalyst for the enantioselective cyclization of the prochiral 13 to 14. Masahiro Murakami of Kyoto University devised (Angew. Chem. Int. Ed. 2015, 54, 7418) a Rh catalyst for the enantioselective ring expansion of the photocycliza­tion product of 15 to the enamine 16. Sebastian Stecko and Bartlomiej Furman of the Polish Academy of Sciences reduced (J. Org. Chem. 2015, 80, 3621) the carbohydrate-derived lactam 17 with the Schwartz reagent to give an intermediate that could be coupled with an isonitrile, leading to the amide 18. Lei Liu of Shandong University oxidized (Angew. Chem. Int. Ed. 2015, 54, 6012) the alkene 19 in the presence of 20 to give 21. Tomislav Rovis of Colorado State University optimized (J. Am. Chem. Soc. 2015, 137, 4445) a Zn catalyst for the addition of 22 to the nitro alkene 23, leading, after reduction, to the piperidine 24. Carlos del Pozo and Santos Fustero of the Universidad de Valencia used (Org. Lett. 2015, 17, 960) a chiral auxiliary to direct the cyclization of 25 to the bicyclic amine 26. In another illustration of the use of microwave irradiation to activate amide bond rotation, G. Maayan of Technion showed (Org. Lett. 2015, 17, 2110) that 27 could be cyclized efficiently to the medium ring lactam 28.

Author(s):  
Douglass F. Taber

D. Srinivasa Reddy of the National Chemical Laboratory converted (Org. Lett. 2015, 17, 2090) the selenide 1 to the alkene 2 under ozonolysis conditions. Takamitsu Hosoya of the Tokyo Medical and Dental University found (Chem. Commun. 2015, 51, 8745) that even highly strained alkynes such as 4 can be generated from a sulfinyl vinyl triflate 3. An alkyne can be protected as the dicobalt hexacarbonyl complex. Joe B. Gilroy and Mark S. Workentin of the University of Western Ontario found (Chem. Commun. 2015, 51, 6647) that following click chemistry on a non-protected distal alkyne, deprotection of 5 to 6 could be effected by exposure to TMNO. Stefan Bräse of the Karlsruhe Institute of Technology and Irina A. Balova of Saint Petersburg State University showed (J. Org. Chem. 2015, 80, 5546) that the bend of the Co complex of 7 enabled ring-closing metathesis, leading after deprotection to 8. Morten Meldal of the University of Copenhagen devised (Eur. J. Org. Chem. 2015, 1433) 9, the base-labile protected form of the aldehyde 10. Nicholas Gathergood of Dublin City University and Stephen J. Connon of the University of Dublin developed (Eur. J. Org. Chem. 2015, 188) an imidazolium catalyst for the exchange deprotection of 11 to 13, with the inexpensive aldehyde 12 as the acceptor. Peter J. Lindsay-Scott of Eli Lilly demonstrated (Org. Lett. 2015, 17, 476) that on exposure to KF, the isoxa­zole 14 unraveled to the nitrile 15. Masato Kitamura of Nagoya University observed (Tetrahedron 2015, 71, 6559) that the allyl ester of 16 could be removed to give 17, with the other alkene not affected. Benzyl ethers are among the most common of alcohol protecting groups. Yongxiang Liu and Maosheng Cheng of Shenyang Pharmaceutical University showed (Adv. Synth. Catal. 2015, 357, 1029) that 18 could be converted to 19 simply by expo­sure to benzyl alcohol in the presence of a gold catalyst. Reko Leino of Åbo Akademi University developed (Synthesis 2015, 47, 1749) an iron catalyst for the reductive benzylation of 20 to 21. Related results (not illustrated) were reported (Org. Lett. 2015, 17, 1778) by Chae S. Yi of Marquette University.


Author(s):  
Douglass Taber

Arumugam Sudalai of the National Chemical Laboratory, Pune reported (Tetrahedron Lett. 2008, 49, 6401) a procedure for hydrocarbon iodination. With straight chain hydrocarbons, only secondary iodination was observed. Chao-Jun Li of McGill University uncovered (Adv. Synth. Cat. 2009, 351, 353) a procedure for direct hydrocarbon amination, converting cyclohexane 1 into the amine 3. Justin Du Bois of Stanford University established (Angew. Chem. Int. Ed. 2009, 48, 4513) a procedure for alkane hydroxylation, converting 4 selectively into the alcohol 6. The oxirane 8 usually also preferentially ozidizes methines, hydroxylating steroids at the C-14 position. Ruggero Curci of the University of Bari found (Tetrahedron Lett. 2008, 49, 5614) that the substrate 7 showed some C-14 hydroxylation, but also a useful yield of the ketone 9. The authors suggested that the C-7 acetoxy group may be deactivating the C-14 C-H. C-H bonds can also be converted directly to carbon-carbon bonds. Mark E. Wood of the University of Exeter found (Tetrahedron Lett. 2009, 50, 3400) that free-radical removal of iodine from 10 followed by intramolecular H-atom abstraction in the presence of the trapping agent 11 delivered 12 with good diastereo control. Professor Li observed (Angew. Chem. Int. Ed. 2008, 47, 6278) that under Ru catalysis, hydrocarbons such as 13 could be directly arylated. He also established (Tetrahedron Lett. 2008, 49, 5601) conditions for the direct aminoalkylation of hydrocarbons such as 13, to give 17. Huw M. L. Davies of Emory University converted (Synlett 2009, 151) the ester 4 to the homologated diester 19 in preparatively useful yield using the diazo ester 18, the precursor to a selective, push-pull stabilized carbene. Intramolecular bond formation to an unactivated C-H can be even more selective. Guoshen Liu of the Shanghai Institute of Organic Chemistry developed (Organic Lett. 2009, 11, 2707) an oxidative Pd system that cyclized 20 to the seven-membered ring lactam 21 . Professor Du Bois devised (J. Am. Chem. Soc. 2008 , 130, 9220) a Rh catalyst that effected allylic amination of 22, to give 23 with substantial enantiocontrol. Dalibor Sames of Columbia University designed (J. Am. Chem. Soc. 2009, 131, 402) a remarkable cascade approach to C-H functionalization. Exposure of 24 to Lewis acid led to intramolecular hydride abstraction. Cyclization of the resulting stabilized carbocation delivered the tetrahydropyan 25 with remarkable diastereocontrol.


Author(s):  
Douglass F. Taber

M. Kevin Brown of Indiana University prepared (J. Am. Chem. Soc. 2015, 137, 3482) the cyclobutane 3 by the organocatalyzed addition of 2 to the alkene 1. Karl Anker Jørgensen of Aarhus University assembled (J. Am. Chem. Soc. 2015, 137, 1685) the complex cyclobutane 7 by the addition of 5 to the acceptor 4, followed by conden­sation with the phosphorane 6. Zhi Li of the National University of Singapore balanced (ACS Catal. 2015, 5, 51) three enzymes to effect enantioselective opening of the epoxide 8 followed by air oxidation to 9. Gang Zhao of the Shanghai Institute of Organic Chemistry and Zhong Li of the East China University of Science and Technology added (Org. Lett. 2015, 17, 688) 10 to 11 to give 12 in high ee. Akkattu T. Biju of the National Chemical Laboratory combined (Chem. Commun. 2015, 51, 9559) 13 with 14 to give the β-lactone 15. Paul Ha-Yeon Cheong of Oregon State University and Karl A. Scheidt of Northwestern University reported (Chem. Commun. 2015, 51, 2690) related results. Dieter Enders of RWTH Aachen University constructed (Chem. Eur. J. 2015, 21, 1004) the complex cyclopentane 20 by the controlled com­bination of 16, 17, and 18, followed by addition of the phosphorane 19. Derek R. Boyd and Paul J. Stevenson of Queen’s University Belfast showed (J. Org. Chem. 2015, 80, 3429) that the product from the microbial oxidation of 21 could be protected as the acetonide 22. Ignacio Carrera of the Universidad de la República described (Org. Lett. 2015, 17, 684) the related oxidation of benzyl azide (not illustrated). Manfred T. Reetz of the Max-Planck-Institut für Kohlenforschung and the Philipps-Universität Marburg found (Angew. Chem. Int. Ed. 2014, 53, 8659) that cytochrome P450 could oxidize the cyclohexane 23 to the cyclohexanol 24. F. Dean Toste of the University of California, Berkeley aminated (J. Am. Chem. Soc. 2015, 137, 3205) the ketone 25 with 26 to give 27. Benjamin List, also of the Max-Planck-Institut für Kohlenforschung, reported (Synlett 2015, 26, 1413) a parallel investigation. Philip Kraft of Givaudan Schweiz AG and Professor List added (Angew. Chem. Int. Ed. 2015, 54, 1960) 28 to 29 to give 30 in high ee.


Author(s):  
Douglass F. Taber

Mei-Huey Lin of the National Changhua University of Education rearranged (J. Org. Chem. 2014, 79, 2751) the initial allene derived from 1 to the γ-chloroenone. Displacement with acetate followed by hydrolysis led to the furan 2. A. Stephen K. Hashmi of Ruprecht-Karls-Universität Heidelberg showed (Angew. Chem. Int. Ed. 2014, 53, 3715) that the Au-catalyzed conversion of the bis alkyne 3, mediated by 4, proceeded selectively to give 5. Tehshik P. Yoon of the University of Wisconsin used (Angew. Chem. Int. Ed. 2014, 53, 793) visible light with a Ru catalyst to rearrange the azide 6 to the pyrrole 7. Cheol-Min Park, now at UNIST, found (Chem. Sci. 2014, 5, 2347) that a Ni catalyst reorganized the methoxime 8 to the pyrrole 9. A Rh catalyst converted 8 to the corresponding pyridine (not illustrated). In the course of a synthesis of opioid ligands, Kenner C. Rice of the National Institute on Drug Abuse optimized (J. Org. Chem. 2014, 79, 5007) the preparation of the pyridine 11 from the alcohol 10. Vincent Tognetti and Cyrille Sabot of the University of Rouen heated (J. Org. Chem. 2014, 79, 1303) 12 and 13 under micro­wave irradiation to give the 3-hydroxy pyridine 14. Tomislav Rovis of Colorado State University prepared (J. Am. Chem. Soc. 2014, 136, 2735) the pyridine 17 by the Rh-catalyzed combination of 15 with 16. Fabien Gagosz of the Ecole Polytechnique rearranged (Angew. Chem. Int. Ed. 2014, 53, 4959) the azirine 18, readily available from the oxime of the β-keto ester, to the pyridine 19. Matthias Beller of the Universität Rostock used (Chem. Eur. J. 2014, 20, 1818) a Zn catalyst to mediate the opening of the epoxide 21 with the aniline 20. A Rh cata­lyst effected the oxidation and cyclization of the product amino alcohol to the indole 22. Sreenivas Katukojvala of the Indian Institute of Science Education & Research showed (Angew. Chem. Int. Ed. 2014, 53, 4076) that the diazo ketone 23 could be used to anneal a benzene ring onto the pyrrole 24, leading to the 2,7-disubstituted indole 25.


Author(s):  
Douglass F. Taber

Dasheng Leow of the National Tsing Hua University used (Eur. J. Org. Chem. 2014, 7347) photolysis to activate the air oxidation of hydrazine to generate diimide, that then reduced 1 selectively to 2. Kevin M. Peese of Bristol-Myers Squibb effected (Org. Lett. 2014, 16, 4444) ring-closing metathesis of 3 followed by in situ reduction to form 4. Jitendra K. Bera of the Indian Institute of Technology Kanpur effected (J. Am. Chem. Soc. 2014, 136, 13987) gentle oxidative cleavage of cyclooctene 5 to the dialde­hyde 6. Arumugam Sudalai of the National Chemical Laboratory observed (Org. Lett. 2014, 16, 5674) high regioselectivity in the oxidation of the alkene 7 to the ketone 8. Hao Xu of Georgia State University also observed (J. Am. Chem. Soc. 2014, 136, 13186) high regioselectivity in the oxidation of the alkene 9 with 10, leading to the urethane 11. Justin Du Bois of Stanford University developed (J. Am. Chem. Soc. 2014, 136, 13506) mild conditions for the net double amination of the alkene 12 with 13, leading to 14. Jiaxi Xu and Pingfan Li of the Beijing University of Chemical Technology devised (Org. Lett. 2014, 16, 6036) a protocol for the allylic thiomethylation of an alkene with 16, converting 15 to 17. Matthias Beller of the Leibniz-Institüt für Katalyse combined (Chem. Eur. J. 2014, 20, 15692) hydroformylation, aldol condensation, and reduction to convert the alkene 18 to the ketone 19. Phil S. Baran of Scripps/La Jolla added (Angew. Chem. Int. Ed. 2014, 53, 14382) the diazo dienone 21 to the alkene 20 to give, after exposure to HCl, the arylated product 22. Markus R. Heinrich of the Friedrich-Alexander-Universität Erlangen-Nürnberg employed (Chem. Eur. J. 2014, 20, 15344) Selectfluor as both an oxidizing and a fluorinating agent in the related addition of 24 to 23 to give 25. Debabrata Maiti at the Indian Institute of Technology Bombay activated (J. Am. Chem. Soc. 2014, 136, 13602) the ortho position of 27, then added that interme­diate to 26 to give 28.


Author(s):  
Douglass F. Taber

John F. Hartwig of the University of California, Berkeley effected (J. Am. Chem. Soc. 2013, 135, 3375) selective borylation of the cyclopropane 1 to give 2. It would be particularly useful if this borylation could be made enantioselective. Eric M. Ferreira of Colorado State University showed (Org. Lett. 2013, 15, 1772) that the enantomeric excess of 3 was transferred to the highly substituted cyclopropane 4. Antonio M. Echavarren of ICIQ Tarragona demonstrated (Org. Lett. 2013, 15, 1576) that Au-mediated cyclobutene construction could be used to form the medium ring of 6. Joseph M. Fox of the University of Delaware developed (J. Am. Chem. Soc. 2013, 135, 9283) what promises to be a general enantioselective route to cyclobutanes such as 8 by way of the intermediate bicyclobutane (not illustrated). Huw M.L. Davies of Emory University reported (Org. Lett. 2013, 15, 310) a preliminary investigation in this same direction. Masahisa Nakada of Waseda University prepared (Org. Lett. 2013, 15, 1004) the cyclopentane 10 by enantioselective cyclization of 9 followed by reductive opening. Young-Ger Suh of Seoul National University cyclized (Org. Lett. 2013, 15, 531) the lactone 11 to the cyclopentane 12. Xavier Ariza and Jaume Farràs of the Universitat de Barcelona optimized (J. Org. Chem. 2013, 78, 5482) the Ti-mediated reductive cyclization of 13 to 14. The hydrogenation catalyst reduced the intermediate Ti–C bond without affecting the alkene. Erick M. Carreira of ETH Zürich observed (Angew. Chem. Int. Ed. 2013, 52, 5382) that a sterically demanding Rh catalyst mediated the highly diastereoselective cyclization of 15 to 16. The ketone 16 was the key intermediate in a synthesis of the epoxyisoprostanes. Jianrong (Steve) Zhou of Nanyang Technological University used (Angew. Chem. Int. Ed. 2013, 52, 4906) a Pd catalyst to effect the coupling of 17 with the prochiral 18. Geum-Sook Hwang and Do Hyun Ryu of Sungkyunkwan University devised (J. Am. Chem. Soc. 2013, 135, 7126) a boron catalyst to effect the addition of the diazo ester 21 to 20. They showed that the sidechain stereocenter was effective in directing the subsequent hydrogenation of 22.


Author(s):  
Douglass F. Taber

Theodore A. Betley of Harvard University devised (J. Am. Chem. Soc. 2011, 133, 4917) an iron catalyst for inserting the nitrene from 2 into the C–H of 1 to give 3. Bernhard Breit of the Freiburg Institute for Advanced Studies uncovered (J. Am. Chem. Soc. 2011, 133, 2386) a Rh catalyst that effected the intriguing hydration of a terminal alkyne 4 to the allylic ester 5. Yian Shi of Colorado State University specifically oxidized (Org. Lett. 2011, 13, 1548) one of the two allylic sites of 6 to give 7. Kálmán J. Szabó of Stockholm University optimized (J. Org. Chem. 2011, 76, 1503) the allylic oxidation of 9 to 10, using the inexpensive sodium perborate. Masayuki Inoue of the University of Tokyo specifically carbamoylated (Tetrahedron Lett. 2011, 52, 2885) the acetonide 12 to give 14. Stephen Caddick of University College London added (Tetrahedron Lett. 2011, 52, 1067) the formyl radical from 15 to 16 to give 17. Ilhyong Ryu of Osaka Prefecture University and Maurizio Fagnoni of the University of Pavia employed (Angew. Chem. Int. Ed. 2011, 50, 1869) a related strategy to effect the net transformation of 18 to 20. There are many examples of the oxidation of ethers and amines to reactive intermediates that can go on to carbon–carbon bond formation. Ram A. Vishwakarma of the Indian Institute of Integrative Medicine observed (Chem. Commun. 2011, 47, 5852) that with an iron catalyst, the aryl Grignard 22 smoothly coupled with THF 21 to give 23. Gong Chen of Pennsylvania State University effected (Angew. Chem. Int. Ed. 2011, 50, 5192) specific remote C–H arylation of 24, leading to 26. Takahiko Akiyama of Gakushuin University established (J. Am. Chem. Soc. 2011, 133, 2424) conditions for intramolecular hydride abstraction, effecting the conversion of 27 to 28. C–H functionalization in nature is often mediated by cytochrome P450 oxidation. Zhi Li of the National University of Singapore showed (Chem. Commun. 2011, 47, 3284) that a particular cytochrome P450 selectively oxidized 29 to the alcohol 30, leaving the chemically more reactive benzylic position intact.


Author(s):  
Douglass F. Taber

Akio Saito and Yuji Hanzawa of Showa Pharmaceutical University found (Tetrahedron Lett. 2011, 52, 4658) that an alkynyl keto ester 1 could be oxidatively cyclized to the furan 2. Eric M. Ferreira of Colorado State University showed (Org. Lett. 2011, 13, 5924) that depending on the conditions, a Pt catalyst could cyclize 3 to either 4 or 5. Shunsuke Chiba of Nanyang Technological University used (J. Am. Chem. Soc. 2011, 133, 13942) Cu catalysis for the oxidation of 6 to the pyrrole 7. Vladimir Gevorgyan of the University of Illinois at Chicago devised (Org. Lett. 2011, 13, 3746) a convergent assembly of the pyrrole 10 from the alkyne 8 and the alkyne 9. Dale L. Boger of Scripps La Jolla extended (J. Am. Chem. Soc. 2011, 133, 12285) the scope of the Diels-Alder addition of the triazine 11 to an alkyne 12 to give the pyridine 13. Tomislav Rovis, also of Colorado State University, used (Chem. Commun. 2011, 47, 11846) a Rh catalyst to add an alkyne 15 to the oxime 14 to give the pyridine 16. Sensuke Ogoshi of Osaka University, under Ni catalysis, added (J. Am. Chem. Soc. 2011, 133, 18018) a nitrile 18 to the diene 17 to give the pyridine 19. Alexander Deiters of North Carolina State University showed (Org. Lett. 2011, 13, 4352) that the complex tethered diyne 20 combined with 21 with high regiocontrol to give 22. Yong-Min Liang of Lanzhou University prepared (J. Org. Chem. 2011, 76, 8329) the indole 24 by cyclizing the alkyne 23. Xiuxiang Qi and Kang Zhao of Tianjin University found (J. Org. Chem. 2011, 76, 8690) that the enamine 25 could be oxidatively cyclized to the indole 26. Kazuhiro Yoshida and Akira Yanagisawa of Chiba University established (Org. Lett. 2011, 13, 4762) that ring-closing metathesis converted the keto ester 27 to the indole 28. Alessandro Palmieri and Roberto Ballini of the Università di Camerino observed (Adv. Synth. Catal. 2011, 353, 1425) that the pyrrole 30 spontaneously added to the nitro acrylate 29 to give an adduct that cyclized to 31 on exposure to acid.


2008 ◽  
Vol 12 (3) ◽  
Author(s):  
Maria Jean Puzziferro ◽  
Kaye Shelton

As the demand for online education continues to increase, institutions are faced with developing process models for efficient, high-quality online course development. This paper describes a systems, team-based, approach that centers on an online instructional design theory (Active Mastery Learning) implemented at Colorado State University-Global Campus.


Sign in / Sign up

Export Citation Format

Share Document