Why Use Automated Machine Learning?

Author(s):  
Kai R. Larsen ◽  
Daniel S. Becker

Machine learning is involved in search, translation, detecting depression, likelihood of college dropout, finding lost children, and to sell all kinds of products. While barely beyond its inception, the current machine learning revolution will affect people and organizations no less than the Industrial Revolution’s effect on weavers and many other skilled laborers. Machine learning will automate hundreds of millions of jobs that were considered too complex for machines ever to take over even a decade ago, including driving, flying, painting, programming, and customer service, as well as many of the jobs previously reserved for humans in the fields of finance, marketing, operations, accounting, and human resources. This section explains how automated machine learning addresses exploratory data analysis, feature engineering, algorithm selection, hyperparameter tuning, and model diagnostics. The section covers the eight criteria considered essential for AutoML to have significant impact: accuracy, productivity, ease of use, understanding and learning, resource availability, process transparency, generalization, and recommended actions.

2020 ◽  
Author(s):  
Srijan Gupta ◽  
Joeran Beel

The advances in the field of Automated Machine Learning (AutoML) have greatly reduced human effort in selecting and optimizing machine learning algorithms. These advances, however, have not yet widely made it to Recommender-Systems libraries. We introduce Auto-CaseRec, a Python framework based on the CaseRec recommender-system library. Auto-CaseRec provides automated algorithm selection and parameter tuning for recommendation algorithms. An initial evaluation of Auto-CaseRec against the baselines shows an average 13.88% improvement in RMSE for theMovielens100K dataset and an average 17.95% improvement in RMSE for the Last.fm dataset.


Author(s):  
Gilles Ottervanger ◽  
Mitra Baratchi ◽  
Holger H. Hoos

AbstractEarly time series classification (EarlyTSC) involves the prediction of a class label based on partial observation of a given time series. Most EarlyTSC algorithms consider the trade-off between accuracy and earliness as two competing objectives, using a single dedicated hyperparameter. To obtain insights into this trade-off requires finding a set of non-dominated (Pareto efficient) classifiers. So far, this has been approached through manual hyperparameter tuning. Since the trade-off hyperparameters only provide indirect control over the earliness-accuracy trade-off, manual tuning is tedious and tends to result in many sub-optimal hyperparameter settings. This complicates the search for optimal hyperparameter settings and forms a hurdle for the application of EarlyTSC to real-world problems. To address these issues, we propose an automated approach to hyperparameter tuning and algorithm selection for EarlyTSC, building on developments in the fast-moving research area known as automated machine learning (AutoML). To deal with the challenging task of optimising two conflicting objectives in early time series classification, we propose MultiETSC, a system for multi-objective algorithm selection and hyperparameter optimisation (MO-CASH) for EarlyTSC. MultiETSC can potentially leverage any existing or future EarlyTSC algorithm and produces a set of Pareto optimal algorithm configurations from which a user can choose a posteriori. As an additional benefit, our proposed framework can incorporate and leverage time-series classification algorithms not originally designed for EarlyTSC for improving performance on EarlyTSC; we demonstrate this property using a newly defined, “naïve” fixed-time algorithm. In an extensive empirical evaluation of our new approach on a benchmark of 115 data sets, we show that MultiETSC performs substantially better than baseline methods, ranking highest (avg. rank 1.98) compared to conceptually simpler single-algorithm (2.98) and single-objective alternatives (4.36).


Author(s):  
Silvia Cristina Nunes das Dores ◽  
Carlos Soares ◽  
Duncan Ruiz

2021 ◽  
Vol 52 (2) ◽  
pp. S3
Author(s):  
Grace Tsui ◽  
Derek S. Tsang ◽  
Chris McIntosh ◽  
Thomas G. Purdie ◽  
Glenn Bauman ◽  
...  

AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 34-47
Author(s):  
Borja Espejo-Garcia ◽  
Ioannis Malounas ◽  
Eleanna Vali ◽  
Spyros Fountas

In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvement of experts working iteratively in the development of the most suitable machine learning system. To support this task and save resources, a new technique called Automated Machine Learning has started being studied. In this work, a complete open-source Automated Machine Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and (ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations, such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training with noisy data, have been compared. The results showed promising performances of 93.8% and 90.74% F1 score depending on the dataset used. These performances were aligned with other related works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by human experts. From these results, it can be concluded that finding a balance between manual expert work and Automated Machine Learning will be an interesting path to work in order to increase the efficiency in plant protection.


Sign in / Sign up

Export Citation Format

Share Document