Technology Choices

2021 ◽  
pp. 55-64
Author(s):  
Peter Drahos

States have an ever-increasing basket of technologies to choose from when it comes to renewable energy. After the OPEC oil crisis, states funded research in renewable energy sources, but this fell away as the crisis passed. State funding of research remains a vital component of creating a rich basket of renewable technology options. The more technology options, the better, as one can cover the risks of the other. Open science is vital to the diffusion of technology options. Large-scale hydropower may be a fragile source of power in a drought-stricken world. The commercial secrecy of nuclear power providers is one of the key reasons the technology will remain expensive.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2771
Author(s):  
Leszek Kotulski ◽  
Artur Basiura ◽  
Igor Wojnicki ◽  
Sebastian Siuchta

The use of formal methods and artificial intelligence has made it possible to automatically design outdoor lighting. Quick design for large cities, in a matter of hours instead of weeks, and analysis of various optimization criteria enables to save energy and tune profit stream from lighting retrofit. Since outdoor lighting is of a large scale, having luminaires on every street in urban areas, and since it needs to be retrofitted every 10 to 15 years, choosing proper parameters and light sources leads to significant energy savings. This paper presents the concept and calculations of Levelized Cost of Electricity for outdoor lighting retrofit. It is understood as cost of energy savings, it is in the range from 23.06 to 54.64 EUR/MWh, based on real-world cases. This makes street and road lighting modernization process the best green “energy source” if compared with the 2018 Fraunhofer Institute cost of electricity renewable energy technologies ranking. This indicates that investment in lighting retrofit is more economically and ecologically viable than investment in new renewable energy sources.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 79-97
Author(s):  
Melis Aras

The energy transition in Europe requires not only the implementation of technological innovations to reduce carbon emissions but also the decentralised extension of these innovations throughout the continent, as demonstrated by the ‘Clean Energy for All Europeans’ package. However, decentralised energy generation, and specifically electricity generation, as it gives rise to new players and interactions, also requires a review of the energy planning process. In this sense, governance becomes the key concept for understanding the implementation of the energy transition in a territory. This is particularly visible in a cross-border setting, especially considering cross-border cooperation in the development of renewable energy sources (RES) provides the necessary elements to determine the criteria of local regulation between the different levels of governance. In light of the current legal framework in France, this paper presents the institutional framework of the multi-level governance of the RES development planning process. It concludes that it is quite conceivable for the rationales of governance at the local level (decentralisation) and the large-scale operation of a large interconnected network (Europeanisation) to coexist.


2018 ◽  
Vol 58 ◽  
pp. 03006 ◽  
Author(s):  
Bekzhan Mukatov ◽  
Ravil Khabibullin

The article describes the main factors determining the development of renewable energy sources in the world. The assessment of the applicability of foreign RES development strategies to Kazakhstan’s energy system has been made. The main tasks facing Kazakhstan’s energy system with large-scale implementation of renewable energy were formulated. On the basis of the analysis and performed calculations recommendations and basic principles have been made on development strategy of renewable energy sources in the Republic of Kazakhstan.


Author(s):  
V. V. Shevchenko ◽  
A. N. Minko ◽  
M. Dimov

The paper defines the directions of improving turbogenerators as the basis for ensuring the energy independence of Ukraine. The analysis of the state, problems and prospects for the development of modern electric power industry. Goal of the work is to identify promising directions for sustainable development of the national electric power industry in order to ensure energy security of Ukraine, to conduct a comparative analysis of electricity sources, to confirm the need to improve the main sources – turbogenerators. Methodology. During the research, an analytical analysis of the electricity sources, which are installed at power plants in Ukraine and the world, was carried out, taking into account the growth of the planet's population and its energy activity. Cyclic theory was chosen as the theoretical basis for forecasting. On the basis of this theory, global development trends, advantages and disadvantages of currently used sources of electricity - thermal (including nuclear) power plants and stations that operate from renewable energy sources - have been established. A review of literary sources on the methods of the energy sector forecasting the development, including the development of the energy sector in Ukraine, has been carried out. Originality. It has been established that due to the active growth of the planet's population, with the increase in its energy activity, obtaining electricity from renewable energy sources is not enough, that for the next 20-30 years nuclear power plants will be the main sources of electricity. The internal and external threats to the energy security of Ukraine, directions of development of turbogenerator construction, ways to improve turbogenerators, to increase their energy efficiency, power per unit of performance, to increase the readiness and maneuverability factors, and overload capacity have been identified. Practical significance. The need to continue the modernization and improvement of the turbogenerators of nuclear power plant units, as the main sources of electricity, has been proved. The directions of their improvement are established: increasing the power in the established sizes, making changes to the design of the turbogenerators inactive elements, replacing the cooling agent to keep Ukrainian turbogenerators at the world level, improving auxiliary systems, improving and increasing the reliability of the excitation system, introduction of automatic systems for monitoring the state turbogenerators. Possible limits of use, advantages, disadvantages and problems of using renewable energy sources for Ukraine have been established.


Sign in / Sign up

Export Citation Format

Share Document