Equations of motion

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter turns to the essential aspects of Newtonian dynamics. It argues that this chapter’s representation of an interaction by a vector means that it is limiting itself to phenomena that do not depend on the position or orientation of the reference frame in which they are studied. Since the algebra of the vector space to which the vectors representing the forces belong is linear, this chapter is de facto limiting itself to interactions which satisfy the superposition principle. The chapter also argues that the law of action and reaction, or Newton’s third law, states that the action of a body P2 on another body P1, described by f21, must be equal and opposite to the action f12 of P1 on P2. Finally, it introduces the principle of Galilean relativity and discusses moving frames and internal forces.

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter defines the conserved quantities associated with an isolated dynamical system, that is, the quantities which remain constant during the motion of the system. The law of momentum conservation follows directly from Newton’s third law. The superposition principle for forces allows Newton’s law of motion for a body Pa acted on by other bodies Pa′ in an inertial Cartesian frame S. The law of angular momentum conservation holds if the forces acting on the elements of the system depend only on the separation of the elements. Finally, the conservation of total energy requires in addition that the forces be derivable from a potential.


Author(s):  
M. A. Nahon ◽  
J. Angeles

Abstract Mechanical hands have become of greater interest in robotics due to the advantages they offer over conventional grippers in tasks requiring dextrous manipulation. However, mechanical hands also tend to be more complex in construction and require more sophisticated design analysis to determine the forces in the system. A mechanical hand can be described as a kinematic chain with time-varying topology which becomes redundantly actuated when an object is grasped. When this occurs, care must be exercised to avoid crushing the object or generating excessive forces within the mechanism. In the present work, this problem is formulated as a constrained quadratic optimization problem. The forces to be minimized form the objective, the dynamic equations of motion form the equality constraints and the finger-object contacts yield the inequality constraints. The quadratic-programming approach is shown to be advantageous due to its ability to minimize ‘internal forces’ A technique is proposed for smoothing the discontinuities in the force solution which occur when the toplogy changes.


1884 ◽  
Vol 12 ◽  
pp. 730-742 ◽  
Author(s):  
James Thomson
Keyword(s):  

In a paper read in this Society on the 3rd of March last, “On the Law of Inertia,” &c., I had occasion to adduce for consideration a problem to the following effect:—


Author(s):  
Torstein R. Storaas ◽  
Kasper Virkesdal ◽  
Gitle S. Brekke ◽  
Thorstein Rykkje ◽  
Thomas Impelluso

Abstract Norwegian industries are constantly assessing new technologies and methods for more efficient and safer maintenance in the aqua cultural, renewable energy, and oil and gas industries. These Norwegian offshore industries share a common challenge: to install new equipment and transport personnel in a safe and controllable way between ships, farms and platforms. This paper deploys the Moving Frame Method (MFM) to analyze ship stability moderated by a dual gyroscopic inertial device. The MFM describes the dynamics of the system using modern mathematics. Lie group theory and Cartan’s moving frames are the foundation of this new approach to engineering dynamics. This, together with a restriction on the variation of the angular velocity used in Hamilton’s principle, enables an effective way of extracting the equations of motion. This project extends previous work. It accounts for the dual effect of two inertial disk devices, it accounts for the prescribed spin of the disks. It separates out the prescribed variables. This work displays the results in 3D on cell phones. It represents a prelude to testing in a wave tank.


Author(s):  
Maren Eriksen Eia ◽  
Elise Mari Vigre ◽  
Thorstein Ravneberg Rykkje

Abstract A Knuckle Boom Crane is a pedestal-mounted, slew-bearing crane with a joint in the middle of the distal arm; i.e. boom. This distal boom articulates at the ‘knuckle (i.e.: joint)’ and that allows it to fold back like a finger. This is an ideal configuration for a crane on a ship where storage space is a premium. This project researches the motion and control of a ship mounted knuckle boom crane to minimize the pendulum motion of a hanging load. To do this, the project leverages the Moving Frame Method (MFM). The MFM draws upon Lie group theory — SO(3) and SE(3) — and Cartan’s Moving Frames. This, together with a compact notation from geometrical physics, makes it possible to extract the equations of motion, expeditiously. The work reported here accounts for the masses and geometry of all components, interactive motor couples and prepares for buoyancy forces and added mass on the ship. The equations of motion are solved numerically using a 4th order Runge Kutta (RK4), while solving for the rotation matrix for the ship using the Cayley-Hamilton theorem and Rodriguez’s formula for each timestep. This work displays the motion on 3D web pages, viewable on mobile devices.


Author(s):  
Alexander G. Tyapin

This paper continues the discussion of linear equations of motion. The author considers non-rigid kinematic excitation for multiply-supported system leading to the deformations in quasi-static response. It turns out that in the equation of motion written down for relative displacements (relative displacements are defined as absolute displacements minus quasi-static response) the contribution of the internal damping to the load in some cases may be zero (like it was for rigid kinematical excitation). For this effect the system under consideration must have homogeneous damping. It is the often case, though not always. Zero contribution of the internal damping to the load is different in origin for rigid and non-rigid kinematic excitation: in the former case nodal loads in the quasi-static response are zero for each element; in the latter case nodal loads in elements are non-zero, but in each node they are balanced giving zero resulting nodal loads. Thus, damping in the quasi-static response does not impact relative motion, but impacts the resulting internal forces. The implementation of the Rayleigh damping model for the right-hand part of the equation leads to the error (like for rigid kinematic excitation), as damping in the Rayleigh model is not really “internal”: due to the participation of mass matrix it works on rigid displacements, which is impossible for internal damping


2021 ◽  
Vol 16 (4) ◽  
Author(s):  
Edward J. Haug

Abstract Topological and vector space attributes of Euclidean space are consolidated from the mathematical literature and employed to create a differentiable manifold structure for holonomic multibody kinematics and dynamics. Using vector space properties of Euclidean space and multivariable calculus, a local kinematic parameterization is presented that establishes the regular configuration space of a multibody system as a differentiable manifold. Topological properties of Euclidean space show that this manifold is naturally partitioned into disjoint, maximal, path connected, singularity free domains of kinematic and dynamic functionality. Using the manifold parameterization, the d'Alembert variational equations of multibody dynamics yield well-posed ordinary differential equations of motion on these domains, without introducing Lagrange multipliers. Solutions of the differential equations satisfy configuration, velocity, and acceleration constraint equations and the variational equations of dynamics, i.e., multibody kinematics and dynamics are embedded in these ordinary differential equations. Two examples, one planar and one spatial, are treated using the formulation presented. Solutions obtained are shown to satisfy all three forms of kinematic constraint to within specified error tolerances, using fourth-order Runge–Kutta numerical integration methods.


Author(s):  
Josef Flatlandsmo ◽  
Torbjørn Smith ◽  
Ørjan O. Halvorsen ◽  
Johnny Vinje ◽  
Thomas J. Impelluso

Norwegian industries are constantly assessing new technologies and methods for more efficient and safer production in the aqua cultural, renewable energy, and oil and gas industries. These Norwegian offshore industries share a common challenge: to install new equipment and transport personnel in a safe and controllable way between ships, farms and platforms. This paper deploys the Moving Frame Method (MFM) to analyze the motion induced by a crane and controlled by a gyroscopic inertial device mounted on a ship. The crane is a simple two-link system that transfers produce and equipment to and from barges. An inertial flywheel — a gyroscope — is used to stabilize the barge during transfer. The MFM describes the dynamics of the system using modern mathematics. Lie group theory and Cartan’s moving frames are the foundation of this new approach to engineering dynamics. This, together with a restriction on the variation of the angular velocity used in Hamilton’s principle, enables an effective way of extracting the equations of motion. This project extends previous work. It accounts for the dual effect of both the crane and the stabilizing inertial device. Furthermore, this work allows for buoyancy and motor induced torques. Furthermore, this work displays the results in 3D on cell phones. The long-term results of this work leads to a robust 3D active compensation method for loading/unloading operations offshore. Finally, the interactivity between the crane and the stabilizing gyro anticipates the impending time of artificial intelligence when machines, equipped with on-board CPU’s and IP addresses, are empowered with learning modules to conduct their operations.


1991 ◽  
Vol 113 (2) ◽  
pp. 167-173 ◽  
Author(s):  
M. A. Nahon ◽  
J. Angeles

Mechanical hands have become of greater interest in robotics due to the advantages they offer over conventional grippers in tasks requiring dextrous manipulation. However, mechanical hands also tend to be more complex in construction and require more sophisticated analysis to determine the forces in the system. A mechanical hand can be described as a kinematic chain with time-varying topology which becomes redundantly actuated when an object is grasped. When this occurs, care must be exercised to avoid crushing the object or generating excessive forces within the mechanism. In the present work, this problem is formulated as a constrained quadratic optimization problem. The forces to be minimized form the objective, the dynamic equations of motion form the equality constraints, and the finger-object contacts yield the inequality constraints. The quadratic-programming approach is shown to be advantageous due to its ability to minimize “internal forces.” A technique is proposed for smoothing the discontinuities in the force solution which occur when the topology changes.


Sign in / Sign up

Export Citation Format

Share Document