Host–parasite co-evolution

2021 ◽  
pp. 389-416
Author(s):  
Paul Schmid-Hempel

Macroevolutionary patterns concern phylogenies of hosts and their parasites. From those, co-speciation occurs; but host switching is a common evolutionary process and more likely when hosts are close phylogenetically and geographical ranges overlap. Microevolutionary processes refer to allele frequency changes within population. In arms races, traits of hosts and parasites evolve in one direction in response to selection by the other party. With selective sweeps, advantageous alleles rapidly spread in host or parasite population and can become fixed. With antagonistic negative frequency-dependent fluctuations (Red Queen dynamics) genetic polymorphism in populations can be maintained, even through speciation events. A Red Queen co-evolutionary process can favour sexual over asexual reproduction and maintain meiotic recombination despite its other disadvantages (two-fold cost of sex). Local adaptation of host and parasites exist in various combinations; the relative migration rates of the two parties, embedded in a geographical mosaic, are important for this process.

2018 ◽  
Author(s):  
Elizabeth L. Anzia ◽  
Jomar F. Rabajante

AbstractWinnerless coevolution of hosts and parasites could exhibit Red Queen dynamics, which is characterized by parasite-driven cyclic switching of expressed host phenotypes. We hypothesize that the application of antibiotics to suppress the reproduction of parasites can provide opportunity for the hosts to escape such winnerless coevolution. Here, we formulate a minimal mathematical model of host-parasite interaction involving multiple host phenotypes that are targeted by adapting parasites. Our model predicts the levels of antibiotic effectiveness that can steer the parasite-driven cyclic switching of host phenotypes (heteroclinic oscillations) to a stable equilibrium of host survival. Our simulations show that uninterrupted application of antibiotic with high-level effectiveness (> 85%) is needed to escape the Red Queen dynamics. Intermittent and low level of antibiotic effectiveness are indeed useless to stop host-parasite coevolution. This study can be a guide in designing good practices and protocols to minimize risk of further progression of parasitic infections.


2016 ◽  
Vol 94 (5) ◽  
pp. 353-360 ◽  
Author(s):  
Ulalume Hernández-Arciga ◽  
L. Gerardo Herrera M. ◽  
Juan B. Morales-Malacara

We used C and N stable isotopes of nectarivorous bats and their ectoparasites to determine the extent to which parasites depend on the host individual for food. The difference in stable isotope values between parasites and host tissues (Δ13C and Δ15N) was used as a proxy of host use. First, we tested the hypothesis that movement among individual Mexican long-tongued bats (Choeronycteris mexicana Tschudi, 1844) is more likely to occur in winged flies than in mites as indicated by higher host–parasite isotopic Euclidian distance (ED). Second, we tested the hypothesis that ectoparasite species in two coexisting bat species representing the C3 (Geoffroy’s tailless bat, Anoura geoffroyi Gray, 1838) and the CAM (lesser long-nosed bat, Leptonycteris yerbabuenae Martínez and Villa-R., 1940) food chains were monoxenous as indicated by their isotopic values. We also examined Δ13C and Δ15N of individual parasites in relation to 13C and 15N reference enrichment factors as an indication of host switching. In general, flies in C. mexicana had higher ED and wider ranges of individual Δ13C and Δ15N than mites, suggesting that host switching occurred to a larger extent. Most ectoparasites species collected in both coexisting bats were monoxenous, but one fly species appears to be oligoxenous. Individual Δ13C and Δ15N values varied widely in these parasite species, suggesting movements within species hosts.


Parasitology ◽  
1999 ◽  
Vol 119 (S1) ◽  
pp. S111-S123 ◽  
Author(s):  
J. A. Jackson

SUMMARYEven the most generalist parasites usually occur in only a subset of potential host species, a tendency which reflects overriding environmental constraints on their distributions in nature. The periodic shifting of these limitations represented by host-switches may have been an important process in the evolution of many host-parasite assemblages. To study such events, however, it must first be established where and when they have occurred. Past host-switches within a group of parasites are usually inferred from a comparison of the parasite phylogeny with that of the hosts. Congruence between the phylogenies is often attributed to a history of association by descent with cospeciation, and incongruence to host-switching or extinction in ‘duplicated’ parasite lineages (which diverged without a corresponding branching of the host tree). The inference of host-switching from incongrucnt patterns is discussed. Difficulties arise because incongruence can frequently be explained by different combinations of biologically distinct events whose relative probabilities are uncertain. Also, the models of host parasite relationships implicit in historical reconstructions may often not allow for plausible sources of incongruence other than host-switching or duplication/extinction, or for the possibility that colonization could, in some circumstances, be disguised by ‘false’ congruence.


2010 ◽  
Vol 6 (S276) ◽  
pp. 300-303 ◽  
Author(s):  
Alexander J. Mustill ◽  
Mark C. Wyatt

AbstractMean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities, although for certain migration rates, capture probability peaks at a finite eccentricity. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle's behaviour as it successively encounters several resonances. The model is applicable to many scenarios, including (i) Planet migration through gas discs trapping other planets or planetesimals in resonances; (ii) Planet migration through a debris disc; (iii) Dust migration through PR drag. The Hamiltonian model will allow quick interpretation of the resonant properties of extrasolar planets and Kuiper Belt Objects, and will allow synthetic images of debris disc structures to be quickly generated, which will be useful for predicting and interpreting disc images made with ALMA, Darwin/TPF or similar missions. Full details can be found in Mustill & Wyatt (2011).


Parasitology ◽  
2012 ◽  
Vol 139 (10) ◽  
pp. 1346-1360 ◽  
Author(s):  
KIRILL V. GALAKTIONOV ◽  
ISABEL BLASCO-COSTA ◽  
PETER D. OLSON

SUMMARYThe ‘pygmaeus’ microphallids (MPG) are a closely related group of 6 digenean (Platyhelminthes: Trematoda) Microphallus species that share a derived 2-host life cycle in which metacercariae develop inside daughter sporocysts in the intermediate host (intertidal and subtidal gastropods, mostly of the genus Littorina) and are infective to marine birds (ducks, gulls and waders). Here we investigate MPG transmission patterns in coastal ecosystems and their diversification with respect to historical events, host switching and host-parasite co-evolution. Species phylogenies and phylogeographical reconstructions are estimated on the basis of 28S, ITS1 and ITS2 rDNA data and we use a combination of analyses to test the robustness and stability of the results, and the likelihood of alternative biogeographical scenarios. Results demonstrate that speciation within the MPG was not associated with co-speciation with either the first intermediate or final hosts, but rather by host-switching events coincident with glacial cycles in the Northern Hemisphere during the late Pliocene/Pleistocene. These resulted in the expansion of Pacific biota into the Arctic-North Atlantic and periodic isolation of Atlantic and Pacific populations. Thus we hypothesize that contemporary species of MPG and their host associations resulted from fragmentation of populations in regional refugia during stadials, and their subsequent range expansion from refugial centres during interstadials.


Sign in / Sign up

Export Citation Format

Share Document