Practical applications and Gibbs energy (G)

Author(s):  
Robert T. Hanlon

Gibbs introduced a new property, later called Gibbs free energy (G), to provide the means by which to quantify the maximum amount of work that can be generated by a given process at constant temperature and pressure. This property can also be used to determine chemical reaction spontaneity.

2020 ◽  
Vol 152 (8) ◽  
pp. 084116
Author(s):  
Carlos Floyd ◽  
Garegin A. Papoian ◽  
Christopher Jarzynski

1998 ◽  
Vol 1 (01) ◽  
pp. 36-42 ◽  
Author(s):  
Huanquan Pan ◽  
Abbas Firoozabadi

Summary The computational problems in reservoir fluid systems are mainly in the critical region and in liquid-liquid (LL), vapor-liquid-liquid (VLL), and higher-phase equilibria. The conventional methods to perform phase-equilibrium calculations with the equality of chemical potentials cannot guarantee a correct solution. In this study, we propose a simple method to calculate the equilibrium state by direct minimization of the Gibbs free energy of the system at constant temperature and pressure. We use the simulated annealing (SA) algorithm to perform the global minimization. Estimates of key parameters of the SA algorithm are also made for phase-behavior calculations. Several examples, including (1) VL equilibria in the critical region, (2) VLL equilibria for reservoir fluid systems, (3) VLL equilibria for an H2S-containing mixture, and (4) VL-multisolid equilibria for reservoir fluids, show the reliability of the method. Introduction Consider the multicomponent-multiphase flash at constant temperature and pressure sketched in Fig. 1. The equilibrium state (the right side of Fig. 1) consists of np phases; each Phase j consists of n1j,n2j,n3j,. . . nncj, moles. From the second law of thermodynamics, the equilibrium state is a state in which the Gibbs free energy of the system is a minimum. The minimum of Gibbs free energy is a sufficient and necessary condition for the equilibrium state. At constant temperature and pressure (note that all calculations will be performed at this condition), the Gibbs free energy of the system in Fig. 1 can be written asEquation 1 where Gj is the Gibbs free energy of Phase j, and G is the total Gibbs free energy of the system. When G is minimized with respect to nij (i=1, 2, . . ., nc; j=1, 2, . . ., np) subject to the following constraints:material balance of Component i,Equation 2the non-negative mole number of Component i in Phase j,Equation 3 The optimized values, ni(i=1, 2, . . ., nc; j=1, 2, . . ., np) are the mole numbers of the equilibrium state. The global minimization with the constraints is difficult to implement; as a consequence, direct minimization of the Gibbs free energy has not been widely applied. Conventional Approach for Phase-Equilibrium Calculations The equality of chemical potentials of each species in all phases is often used to perform the phase-equilibrium calculations:Equation 4 The number of equations in Eq. 4 is nc×(np-1), plus nc material-balance equations given by Eq. 2; a total of nc×np equations are provided. The mole numbers nij (i=1, 2, . . ., nc; j=1, 2, . . ., np) of the equilibrium state are determined by solving these nc×np nonlinear equations. The widely used solution methods are the successive substitution method through phase-equilibrium constants Ki (i=1, 2, . . ., nc) and direct application of the Newton method. Both approaches require an initial guess and work quite well for VL equilibria except in the near-critical region. In the critical region, the successive substitution becomes intolerably slow and the Newton method may fail when the initial guess is not close to the true solution. In LL and VLL equilibria, both methods may compute false solutions. The falseness is because Eq. 4 is only a necessary condition for an equilibrium state.1 The tangent-plane-distance (TPD) approach has been introduced to recognize the false solution.1,2 The concept of stability analysis is used to derive the TPD. Tangent-Plane-Distance Approach Suppose w is a given overall composition. The mathematical expression of the TPD function isEquation 5a where D(u) is the distance function between the Gibbs free energy surface and its tangent plane at composition w. When D(u) is minimized with respect to ui(i=1, 2, . . ., nc) subject toEquations 5b and 5c the optimized value, D*, provides the stability analysis of the mixture at composition w. If D* 0, the system is absolutely stable; if D*<0, the system is unstable. The optimized composition u* is a good approximation of the incipient phase composition. The application of TPD criterion improves the reliability of conventional-phase equilibrium by providing a guideline to judge that the mixture is absolutely stable. When unstable, a good initial composition u* strengthens the convergence of the Newton or the successive substitution methods. Unfortunately, the solution to Eq. 5 is also an optimization problem with constraints. Michelson2 has solved the problem by locating the stationary points of the TPD function. This approach needs to solve (nc-1) nonlinear equations. A good initial guess is required to avoid the trivial solution. Because not all stationary points can be found with this method, phase stability cannot always be guaranteed.3 Later, we will give an example of a CO2-crude system for which the approach of locating the stationary points misses the true solution in spite of its novelty and strengths. Several methods have been proposed to improve the calculation of the TPD function. These include homotopy-continuation,4 branch and bound3 and differential geometry, and the theory of differential equations.5


Author(s):  
Boris S. Bokstein ◽  
Mikhail I. Mendelev ◽  
David J. Srolovitz

This chapter is devoted to chemical equilibrium. We will use thermodynamics to answer two main questions: (1) ‘‘In which direction will a chemical reaction proceed?’’ and (2) ‘‘What is the composition of the system at equilibrium?’’ These are the oldest and most important questions in all of chemical thermodynamics for obvious reasons. The answers to these questions represent the foundation upon which all modern chemical technologies rest. Consider the following chemical reaction: . . . aA = bB ⇆ cC + dD. (5.1) . . . A, B, C, and D represent the chemical species participating in the reaction and a, b, c, and d are the stoichiometric coefficients of these species. We refer to the species on the left side of this chemical equation as reactants and those on the right as products. The reaction in Eq. (5.1) can either go forward, from left to right (reactants to products), or backward, from right to left (products to reactants). Therefore, we see that the definition of which we call reactants and which products is arbitrary. Assume that Eq. (5.1) occurs at constant temperature and pressure. Under these conditions, the direction of the reaction is determined by the sign of the change of the Gibbs free energy.


2013 ◽  
Vol 803 ◽  
pp. 90-93
Author(s):  
Qiu Hui Yan ◽  
Dong Zhang ◽  
Yan Ren ◽  
Xie Liu ◽  
Xiao Hong Nan

On the basis of ASPEN PLUS-based Gibbs free energy minimization, a biomass gasification model was modified by the restricted equilibrium of the RGIBBS reactor and developed and used to simulate glucose. It is showed that the simulation result and experiment result fit well. In the process of pomace gasification in supercritical water, a sensitivity analysis with temperature and pressure is performed and the research of the gas heating value has been done. From the analysis result, without using catalyst, the temperature has influenced on the gas product most and the pressure has little effect on gas product.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


Sign in / Sign up

Export Citation Format

Share Document