Thermodynamics of chemical reactions

Author(s):  
Boris S. Bokstein ◽  
Mikhail I. Mendelev ◽  
David J. Srolovitz

This chapter is devoted to chemical equilibrium. We will use thermodynamics to answer two main questions: (1) ‘‘In which direction will a chemical reaction proceed?’’ and (2) ‘‘What is the composition of the system at equilibrium?’’ These are the oldest and most important questions in all of chemical thermodynamics for obvious reasons. The answers to these questions represent the foundation upon which all modern chemical technologies rest. Consider the following chemical reaction: . . . aA = bB ⇆ cC + dD. (5.1) . . . A, B, C, and D represent the chemical species participating in the reaction and a, b, c, and d are the stoichiometric coefficients of these species. We refer to the species on the left side of this chemical equation as reactants and those on the right as products. The reaction in Eq. (5.1) can either go forward, from left to right (reactants to products), or backward, from right to left (products to reactants). Therefore, we see that the definition of which we call reactants and which products is arbitrary. Assume that Eq. (5.1) occurs at constant temperature and pressure. Under these conditions, the direction of the reaction is determined by the sign of the change of the Gibbs free energy.

Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


2020 ◽  
Vol 152 (8) ◽  
pp. 084116
Author(s):  
Carlos Floyd ◽  
Garegin A. Papoian ◽  
Christopher Jarzynski

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1003
Author(s):  
Stoyan I. Karakashev ◽  
Nikolay A. Grozev

Why the bubbles are negatively charged? This is almost 100 years old question, which many scientists have striven and still are striving to answer using the latest developments of the MD simulations and various physical analytical methods. We scrutinize with this paper the basic literature on this topic and conduct our own analysis. Following the philosophical law of parsimony: “Entities should not be multiplied without necessity”, we assume that the simplest explanation is the right one. It is well known that the negative change of the Gibbs free energy is a solid criterion for spontaneous process. Hence, we calculated the energies of adsorption of OH−, H3O+ and HCO3− ions on the air/water interface using the latest theoretical developments on the dispersion interaction of inorganic ions with the air/water interface. Thus, we established that the adsorption of OH− and HCO3− ions is energetically favorable, while the adsorption of H3O+ is energetically unfavorable. Moreover, we calculated the change of the entropy of these ions upon their transfer from the bulk to the air/water interface. Using the well-known formula ΔG = ΔH − TΔS, we established that the adsorption of OH− and HCO3− ions on the air/water interface decreases their Gibbs free energy. On the contrary, the adsorption of H3O+ ions on the air/water interface increases their Gibbs free energy. Thus, we established that both OH− and HCO3− ions adsorb on the air/water interface, while the H3O+ ions are repelled by the latter. Therefore, electrical double layer (EDL) is formed at the surface of the bubble–negatively charged adsorption layer of OH− and HCO3− ions and positively charged diffuse layer of H3O+ ions.


2021 ◽  
pp. 344-364
Author(s):  
Christopher O. Oriakhi

Chemical Thermodynamics discusses the fundamental laws of thermodynamics along with their relationships to heat, work, enthalpy, entropy, and temperature. Predicting the direction of a spontaneous change and calculating the change in entropy of a reaction are core concepts. The relationship between entropy, free energy and work is covered. The Gibbs free energy is used quantitatively to predict if reactions or processes are going to be exothermic and spontaneous or endothermic under the stated conditions. Also explored are the enthalpy and entropy changes during a phase change. Finally the Gibbs free energy of a chemical reaction is related to its equilibrium constant and the temperature.


Author(s):  
Robert T. Hanlon

Gibbs introduced a new property, later called Gibbs free energy (G), to provide the means by which to quantify the maximum amount of work that can be generated by a given process at constant temperature and pressure. This property can also be used to determine chemical reaction spontaneity.


2020 ◽  
Vol 1 (4) ◽  
pp. 130-135
Author(s):  
Dwindi Agryanti Johar

This study discusses the equalization of chemical reactions using a system of linear equations with the Gaussian and Gauss-Jordan elimination. The results show that there is a contradiction in the existing methods for balancing chemical reactions. This study also aims to criticize several studies that say that the equalization of the reaction coefficient can use a system of linear equations. In this paper, the chemical equations were balanced by representing the chemical equation into systems of linear equations. Particularly, the Gauss and Gauss-Jordan elimination methods were used to solve the mathematical problem with this method, it was possible to handle any chemical reaction with given reactants and products.


Author(s):  
Adrian Bonilla-Petriciolet ◽  
Ma. del Rosario Moreno-Virgen ◽  
Juan Jose Soto-Bernal

Phase equilibrium calculations in systems subject to chemical reactions play a major role in the design of reactive separation schemes including chemical reaction engineering. Basically, these calculations involve the global minimization of Gibbs free energy constrained by the material balances and chemical equilibrium restrictions. However, Gibbs free energy function is non-convex, highly non-linear with many decision variables, and may have several local minimums including trivial and nonphysical solutions. In these conditions, conventional numerical methods are not suitable for solving reactive phase equilibrium problems. Recently, there has been a significant and increasing interest in the development of global strategies for reliably solving reactive phase equilibrium problems subject. Harmony search (HS) is a global stochastic optimization method, which has been conceptualized using the musical process of searching for a perfect state of harmony. Until now, HS has been successfully applied to solve various engineering and optimization problems. However, there are few studies concerning the application of this optimization method for chemical engineering calculations. To the best of our knowledge, the performance of HS for solving reactive phase equilibrium problems has not yet been reported. Therefore, this paper introduces the application of HS-based algorithms to the constrained global minimization of Gibbs free energy in reactive systems. Specifically, we have studied the performance of three variants of HS in reactive phase equilibrium calculations. Our results are useful to identify the capabilities and relative strengths of HS with respect to other stochastic optimization methods for the simultaneous calculation of physical and chemical equilibrium.


Sign in / Sign up

Export Citation Format

Share Document