Quantum Interference: Wave–Particle Duality

Author(s):  
M. Suhail Zubairy

Young’s double-slit experiment played a crucial role in establishing the wave nature of light. In this chapter, the shocking result that incident electrons yield a similar interference pattern as that formed by light waves is described. It is shown that the only way the experimental results could be explained is via a wave function description of electrons. It is also shown that, in the same experiment, the interference fringes disappear if the which-path information becomes available. This is the essence of wave–particle duality. The first of the Einstein–Bohr debates on wave-particle duality and Bohr’s principle of complementarity in the double-slit experiment is also discussed. Also presented are the counterintuitive notions of delayed choice and quantum eraser effects showing how the availability or erasure of information generated in the future can affect how the data in the present can be interpreted.

2015 ◽  
Vol 7 (3) ◽  
pp. 1916-1922
Author(s):  
Jeffrey H Boyd

Wave particle duality is a mistake. Another option was neither conceived nor debated, which is a better foundation for quantum mechanics. The Theory of Elementary Waves (TEW) is based on the idea that particles follow zero energy waves backwards. A particle cannot be identical with its wave if they travel in opposite directions. TEW is the only form of local realism that is consistent with the results of the experiment by Aspect, Dalibard and Roger (1982). Here we show that 1. although QM teaches that complementarity in a double slit experiment cannot be logically explained, TEW explains it logically, without wave function collapse, and 2. gives an unconventional explanation of the Davisson Germer experiment. 3. There is empirical evidence for countervailing waves and particles and 4. zero energy waves. 5. TEW clarifies our understanding of probability amplitudes and supports quantum math. 6. There is an untested experiment for which TEW and wave particle duality predict different outcomes. If TEW is valid, then wave particle duality is not necessary for quantum math, which is the most accurate and productive science ever. With a more solid foundation, new vistas of science open, such as the study of elementary waves.


2021 ◽  
Author(s):  
Hui Peng

Abstract The particle nature of the photons was experimentally confirmed. The static straight line diffraction pattern of the normal grating experiments has been shown experimentally. The phenomenon of the dynamic curved diffraction pattern of the grating experiment have been shown in separate experiments. In this article, the new experiments are proposed and performed, which show that the particle nature of the photons, the static straight line diffraction patterns, and the dynamic curved, expanded and inclined diffraction patterns co-exist in the same grating experiment simultaneously. The novel phenomena make the Feynman’s mystery of the normal double slit experiment more mysterious, violate Bohr’s complementarity principle, and provide comprehensive information/data for studying the wave-particle duality and developing new theoretical model.


The study of the dual nature of the electron is proposed, with alterations in initial double-slit experiment. We are aware of mysterious nature of the quantum particles, particularly electrons. The particle behaves as wave, but upon observation, the wave-function of the electron is collapsed. No longer is an interference pattern observed, which in a sense, limits us and binds us to what we can measure and what we cannot, with current detection methods. In the double slit experiment, a source of high-intensity light is used to measure the position of the electrons, which leads to the collapse of the wave-function. An investigation is proposed to observe the effects of the low-intensity electric field on the duality of electron.


2020 ◽  
Vol 17 ◽  
pp. 169-203
Author(s):  
Jeffrey Boyd

This article proposes that an unexpected approach to the mathematics of a Schro ̋dinger wave packet and Quantum Electro-Dynamics (QED), could vastly simplify how we perceive the world around us. It could get rid of most if not all quantum weirdness. Schro ̋dinger’s cat would be gone. Even things that we thought were unquestionably true about the quantum world would change. For example, the double slit experiment would no longer support wave particle duality. Experiments that appeared to say that entangled particles can communicate instantaneously over great distances, would no longer say that. Although the tiny mathematical change is counterintuitive, Occam’s razor dictates that we consider it because it simplifies how we view Nature in such a pervasive way. The change in question is to view a Schro ̋dinger wave packet as part of a larger Elementary Wave traveling in the opposite direction. It is known in quantum mechanics that the same wave can travel in two countervailing directions simultaneously. Equivalent changes would be made to QED and Quantum Field Theory. It is known in QM that there are zero energy waves: for example, the Schro ̋dinger wave carries amplitudes but not energy.


2021 ◽  
Vol 9 (02) ◽  
pp. 443-450
Author(s):  
A. Hazarika ◽  
◽  
L.K. Rajkhowa ◽  
J. Saikia ◽  
G.D. Baruah ◽  
...  

We make a comparison between the concepts and physics behind Youngs double slit experiment and ⋀-δ and ⋁-δ type three level atoms producing quantum interference.


2013 ◽  
Vol 11 (08) ◽  
pp. 1330002 ◽  
Author(s):  
JOSEPH M. RENES

Complementarity is one of the central mysteries of quantum mechanics, dramatically illustrated by the wave-particle duality in Young's double-slit experiment, and famously regarded by Feynman as "impossible, absolutely impossible to describe classically, [and] which has in it the heart of quantum mechanics" (emphasis original).1 The overarching goal of this thesis is to demonstrate that complementarity is also at the heart of quantum information theory, that it allows us to make (some) sense of just what information "quantum information" refers to, and that it is useful in understanding and constructing quantum information processing protocols.


2021 ◽  
Vol 18 (11) ◽  
pp. 2150182
Author(s):  
Fayçal Ben Adda

The use of an infinity of fluctuating paths of least time that are compatible with the quantum mechanics indeterminacy provides a new interpretation in geometrical optic of the interference pattern of Young’s double slit experiment, which suggests that the wave behavior of matter and radiation is dictated by the space-time geodesics. Moreover, the association of a wave function to each path of least time as a probability amplitude together with an uncertainty for momentum and position allows to derive the Schrödinger’s equation starting from the geodesic’s characteristics. A new insight is obtained regarding the van der Waals torque as well as Casimir attraction/repulsion mechanism.


Sign in / Sign up

Export Citation Format

Share Document