The Gene's-Eye View of Evolution

Author(s):  
J. Arvid Ågren

To many evolutionary biologists, the central challenge of their discipline is to explain adaptation, the appearance of design in the living world. With the theory of evolution by natural selection, Charles Darwin elegantly showed how a purely mechanistic process can achieve this striking feature of nature. Since Darwin, the way many biologists think about evolution and natural selection is as a theory about individual organisms. Over a century later, a subtle but radical shift in perspective emerged with the gene’s-eye view of evolution in which natural selection was conceptualized as a struggle between genes for replication and transmission to the next generation. This viewpoint culminated with the publication of The Selfish Gene by Richard Dawkins (Oxford University Press, 1976) and is now commonly referred to as selfish gene thinking. The gene’s-eye view has subsequently played a central role in evolutionary biology, although it continues to attract controversy. The central aim of this accessible book is to show how the gene’s-eye view differs from the traditional organismal account of evolution, trace its historical origins, clarify typical misunderstandings and, by using examples from contemporary experimental work, show why so many evolutionary biologists still consider it an indispensable heuristic. The book concludes by discussing how selfish gene thinking fits into ongoing debates in evolutionary biology, and what they tell us about the future of the gene’s-eye view of evolution. The Gene’s-Eye View of Evolution is suitable for graduate-level students taking courses in evolutionary biology, behavioural ecology, and evolutionary genetics, as well as professional researchers in these fields. It will also appeal to a broader, interdisciplinary audience from the social sciences and humanities including philosophers and historians of science

2009 ◽  
Vol 5 (4) ◽  
pp. 503-505 ◽  
Author(s):  
Lindell Bromham

Analysis of DNA sequences now plays a key role in evolutionary biology research. If Darwin were to come back today, I think he would be absolutely delighted with molecular evolutionary genetics, for three reasons. First, it solved one of the greatest problems for his theory of evolution by natural selection. Second, it gives us a tool that can be used to investigate many of the questions he found the most fascinating. And third, DNA data confirm Darwin's grand view of evolution.


Author(s):  
Richard Machalek

During its emergence as a new academic discipline in the late 19th century, sociology was influenced by Darwin’s theory of evolution by natural selection. By the mid-20th century, however, biological thinking in general and evolutionary theory in particular had waned in influence in American sociology. This began to change during the last quarter of the 20th century—a development due in large part to the work of Edward O. Wilson, a prominent biologist and one of the founders of sociobiology. By the dawn of the 21st century, evolutionary thinking had again gained a foothold in the social sciences, including sociology. However, full consilience between evolutionary biology and sociology has not yet been achieved. This chapter reviews issues in terms of which evolutionary biology and sociology converge in some instances and diverge in others. The chapter concludes with an assessment of the prospects for the development of a robust evolutionary sociology.


Author(s):  
Samir Okasha

In 1859 Charles Darwin published On the Origin of Species, in which he set out his theory of evolution. The book marked a turning point in our understanding of the natural world and revolutionized biology. ‘Evolution and natural selection’ outlines the theory of evolution by natural selection, explaining its unique status in biology and its philosophical significance. It considers how Darwin’s theory undermined the ‘argument from design’, a traditional philosophical argument for the existence of God; how the integration of Darwin’s theory with genetics, in the early 20th century, gave rise to neo-Darwinism; and why, despite evolutionary theory being a mainstay of modern biology, in society at large there is a marked reluctance to believe in evolution.


Author(s):  
Brian Charlesworth ◽  
Deborah Charlesworth

Less than 150 years ago, the view that living species were the result of special creation by God was still dominant. The recognition by Charles Darwin and Alfred Russel Wallace of the mechanism of evolution by natural selection has completely transformed our understanding of the living world, including our own origins. Evolution: A Very Short Introduction provides a summary of the process of evolution by natural selection, highlighting the wide range of evidence, and explains how natural selection gives rise to adaptations and eventually, over many generations, to new species. It introduces the central concepts of the field of evolutionary biology and discusses some of the remaining questions regarding evolutionary processes.


Polar Record ◽  
1985 ◽  
Vol 22 (139) ◽  
pp. 413-420 ◽  
Author(s):  
Richard Grove

AbstractCharles Darwin's notes, diary entries and letters covering visits to southern South America and the Falkland Islands in 1833 and 1834 throw light on the revolutionary events of the time. His notes also contain the first indication of an evolutionary concept, suggested by the endemic flora and fauna of the Falklands, which guided his later observations on the Galapagos Islands and lead ultimately to his theory of evolution by natural selection.


Author(s):  
David Reznick ◽  
Joseph Travis

When Charles Darwin and Alfred Russell Wallace proposed their theory of evolution by natural selection, the concepts of evolution and speciation were not new. Darwin introduced The Origin with “An Historical Sketch,” in which he summarized the work of 34 previous authors who had speculated on evolution and the origin of species. What was new about Darwin and Wallace’s proposition was natural selection as the mechanism of evolutionary change. Darwin further proposed that natural selection was a unifying process that accounts for adaptation, for speciation, and hence for the diversity of life on earth. Darwin and Wallace proposed natural selection as a process that caused evolution. Adaptations are features of organisms that were shaped by this process. The modern version of Darwin and Wallace’s theory allows for other agents of evolution, such as genetic drift, migration, and mutation, but adaptation remains a product of natural selection alone. The virtue of their proposal is that it allows us to develop testable hypotheses about cause-and-effect relationships between features of the environment and presumed adaptations. Natural selection immediately became a source of controversy, although the nature of the controversy has shifted over time. First, there has been considerable debate about the definition of adaptation (e.g., Reeve and Sherman 1993). We do not wish to add to or summarize this debate because we feel that Darwin got it right the first time. Besides defining a cause-and-effect relationship between selection and adaptation, Darwin emphasized that we should not expect organisms to be perfectly adapted to their environment. In fact, this emphasis was a large component of his argument against divine creation. For example, Darwin recognized, through his experience with artificial selection, that different aspects of morphology were in some way “tied” to one another so that selection on one trait would cause correlated changes in others that were not necessarily adaptive. He also recognized that organisms were subject to constraints that might limit their ability to adapt. Finally, he argued that how organisms evolved was a function of their history, so that the response to selection on the same trait would vary among lineages. A more telling criticism considers the application of cause-and-effect reasoning to the interpretation of features of organisms as adaptations, and hence to the empirical study of adaptation.


1986 ◽  
Vol 19 (3) ◽  
pp. 283-299 ◽  
Author(s):  
John Sheail

Worster depicted ecology as ‘a stranger who has just blown into town’ — it had ‘a presence without a past’. In seeking to remedy this deficiency, historians have drawn attention to the fact that an interest in the relationship of wild species to their environment, and to one another, can be discerned well before the theory of evolution by natural selection was enunciated by Charles Darwin in the Origin of Species.


2021 ◽  
Vol 9 ◽  
Author(s):  
Marion Petrie

Charles Darwin published his second book “Sexual selection and the descent of man” in 1871 150 years ago, to try to explain, amongst other things, the evolution of the peacock’s train, something that he famously thought was problematic for his theory of evolution by natural selection. He proposed that the peacock’s train had evolved because females preferred to mate with males with more elaborate trains. This idea was very controversial at the time and it wasn’t until 1991 that a manuscript testing Darwin’s hypothesis was published. The idea that a character could arise as a result of a female preference is still controversial. Some argue that there is no need to distinguish sexual from natural selection and that natural selection can adequately explain the evolution of extravagant characteristics that are characteristic of sexually selected species. Here, I outline the reasons why I think that this is not the case and that Darwin was right to distinguish sexual selection as a distinct process. I present a simple verbal and mathematical model to expound the view that sexual selection is profoundly different from natural selection because, uniquely, it can simultaneously promote and maintain the genetic variation which fuels evolutionary change. Viewed in this way, sexual selection can help resolve other evolutionary conundrums, such as the evolution of sexual reproduction, that are characterised by having impossibly large costs and no obvious immediate benefits and which have baffled evolutionary biologists for a very long time. If sexual selection does indeed facilitate rapid adaptation to a changing environment as I have outlined, then it is very important that we understand the fundamentals of adaptive mate choice and guard against any disruption to this natural process.


Sign in / Sign up

Export Citation Format

Share Document