The thoracic wall and diaphragm

Author(s):  
Martin E. Atkinson

The thoracic wall is made up of skeletal elements that form the thoracic cage (or more commonly, but less accurately, the rib cage) and muscles that move the components of the thoracic cage relative to each other for ventilation and postural movement. The thoracic cage is made up posteriorly by the thoracic part of the vertebral column, laterally and anteriorly by the ribs and costal cartilages, and by the sternum in the anterior mid-sternal area. The thoracic vertebral column is made up of 12 thoracic vertebrae and their intervertebral discs. The thoracic vertebrae are not arranged in a straight line, but are concave anteriorly as shown in Figure 9.2. All vertebrae have the following general configuration as shown in Figure 10.1A: • A heart-shaped body with two backward projections, the pedicles, either side of the vertebral foramen. The foramen forms the spinal canal with the foramina of other vertebrae. Note in Figure 10.1C that the pedicles are slightly shallow above and strongly grooved below to form intervertebral foramina with adjacent vertebrae for the passage of spinal nerves; • Two stout transverse processes running laterally and slightly posteriorly; • Two flat plates called laminae which join to form a long spinous process—you can feel the tips of the spinous processes very easily under the skin in the midline of your back; • Superior and inferior articular processes at the junction of the pedicles and laminae. In thoracic vertebrae, the superior facets are set vertically with the facets on the superior processes facing posterolaterally and those on the inferior processes anteromedially; the relative movement of the vertebrae is thus mainly rotary, but there is very little actual movement in the thoracic part of the vertebral column. The thoracic vertebrae are modified from this basic pattern to articulate with the ribs through several more articular facets as shown in Figure 10.1 A, B, and C. They carry on each side: • Shown most clearly in Figure 10.1 C, a superior and inferior demifacet (a half facet) on each side of the body for the heads of two ribs in the case of T2–T9 or a single complete facet for the head of one rib in the case of T1 and T10–T12; • Shown in Figure 10.1 A and B, a facet near the tip of each transverse process for the tubercle of a rib (except T11 and T12).

Author(s):  
Martin E. Atkinson

The surface anatomies of the face and neck and their supporting structures that can be palpated have been described in Chapter 20. It is now time to move to the structures that lie under the skin but which cannot be identified by touch starting with the neck and moving up on to the face and scalp. The cervical vertebral column comprises the seven cervical vertebrae and the intervening intervertebral discs. These have the same basic structure as the thoracic vertebrae described in Section 10.1.1. Examine the features of the cervical vertebra shown in Figure 23.1 and compare it with the thoracic vertebra shown in Figure 10.3. You will see that cervical vertebrae have a small body and a large vertebral foramen. They also have two distinguishing features, a bifid spinous process and a transverse foramen, piercing each transverse process; the vertebral vessels travel through these foramina. The first and second vertebrae are modified. The first vertebra, the atlas, has no body. Instead, it has two lateral masses connected by anterior and posterior arches. The lateral masses have concave superior facets which articulate with the occipital condyles where nodding movements of the head take place at the atlanto-occipital joints. The second cervical vertebra, the axis, has a strong odontoid process (or dens because of its supposed resemblance to a tooth) projecting upwards from its body. This process is, in fact, the body of the first vertebra which has fused with the body of the axis instead of being incorporated into the atlas. The front of the dens articulates with the back of the anterior arch of the atlas; rotary (shaking) movements of the head occur at this joint. The seventh cervical vertebra has a very long spinous process which is easily palpable. The primary curvature of the vertebral column is concave forwards and this persists in the thoracic and pelvic regions. In contrast, the cervical and lumbar parts of the vertebral column are convexly curved anteriorly. These anterior curvatures are secondary curvatures which appear in late fetal life. The cervical curvature becomes accentuated in early childhood as the child begins to support its own head and the lumbar curve develops as the child begins to sit up.


Author(s):  
Martin E. Atkinson

The locomotor system comprises the skeleton, composed principally of bone and cartilage, the joints between them, and the muscles which move bones at joints. The skeleton forms a supporting framework for the body and provides the levers to which the muscles are attached to produce movement of parts of the body in relation to each other or movement of the body as a whole in relation to its environment. The skeleton also plays a crucial role in the protection of internal organs. The skeleton is shown in outline in Figure 2.1A. The skull, vertebral column, and ribs together constitute the axial skeleton. This forms, as its name implies, the axis of the body. The skull houses and protects the brain and the eyes and ears; the anatomy of the skull is absolutely fundamental to the understanding of the structure of the head and is covered in detail in Section 4. The vertebral column surrounds and protects the spinal cord which is enclosed in the spinal canal formed by a large central canal in each vertebra. The vertebral column is formed from 33 individual bones although some of these become fused together. The vertebral column and its component bones are shown from the side in Figure 2.1B. There are seven cervical vertebrae in the neck, twelve thoracic vertebrae in the posterior wall of the thorax, five lumbar vertebrae in the small of the back, five fused sacral vertebrae in the pelvis, and four coccygeal vertebrae—the vestigial remnants of a tail. Intervertebral discs separate individual vertebrae from each other and act as a cushion between the adjacent bones; the discs are absent from the fused sacral vertebrae. The cervical vertebrae are small and very mobile, allowing an extensive range of neck movements and hence changes in head position. The first two cervical vertebrae, the atlas and axis, have unusual shapes and specialized joints that allow nodding and shaking movements of the head on the neck. The thoracic vertebrae are relatively immobile. combination of thoracic vertebral column, ribs, and sternum form the thoracic cage that protects the thoracic organs, the heart, and lungs and is intimately involved in ventilation (breathing).


Author(s):  
S. Sathapathy ◽  
B. S. Dhote ◽  
D. Mahanta ◽  
S. Tamilselvan ◽  
I. Singh ◽  
...  

The present study was carried out on the seventh, eighth and ninth thoracic vertebrae of six specimens of adult Blue bull (Boselaphus tragocamelus) of either sex. The first, second and third thoracic vertebrae were characterized by long supraspinous process, cylindrical, but shorter centrum. The arch presented shallow notches and was perforated by intervertebral foramina at its caudal aspect. They also presented cranial and caudal facets on their bodies. The length and breadth of supra spinous processes was observed to decrease from T7 to T9. The transverse process was reported to be thick, strong and presented a rounded non-articular mammillary process and a facet ventrally, which in turn articulated with the facet of the tubercle of the corresponding rib. The dorsal suprasinous process presented two surfaces, two borders and a summit. The costal facets were placed on either side at the end of the articular extremities of the centrum. The cranial articular processes were represented by oval facets on the anterior part of the arch and faced upwards, whereas the caudal ones sprang from the base of the dorsal supraspinous process. However, the cranial and caudal articular facets of T8 were human foot print like in Blue bull. The Biometrical observations on different parameters of seventh, eighth and ninth thoracic vertebrae reflected significant (P less than 0.05) differences between the sexes of this species.


2021 ◽  
Vol 25 (11) ◽  
pp. 1235-1235
Author(s):  
I. Tsimkhes

C. Fervers (Zentralbl. F. Chir. No. 37, 1929), in order to avoid complications, inserts the needle with paravertebral anesthesia one finger away from the spinous processes towards the angle formed by the transverse process and the edge of the vertebral body (the outer end of the needle with the midline forms an angle of 20 -30 ). The designated angle is located normally in the thoracic part of the spine near the upper edge of the spinous process, in the lumbar part, in the middle of the lower edge of the spinous process. In this way, the needle easily reaches the vertebral wall, and the injected fluid washes the ramus anter. ram. communicans. During operations, the author recommends using paravertebral anesthesia only for unilateral processes, such as appendicitis, cholelithiasis, kidneys and ureters and hernias. For the purposes of differential diagnosis and therapy, paravertebral anesthesia can be used.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Priscilla Magno ◽  
Mouen A. Khashab ◽  
Manuel Mas ◽  
Samuel A. Giday ◽  
Jonathan M. Buscaglia ◽  
...  

Background. NOTES techniques allow transesophageal access to the mediastinum. The aim of this study was to assess the feasibility of transesophageal biopsy of thoracic vertebrae.Methods. Nonsurvival experiments on four 50-kg porcine animals were performed. Transesophageal access to the mediastinum was attained using submucosal tunneling technique.Results. The posterior mediastinum was successfully accessed and navigated in all animals. Vertebral bodies and intervertebral spaces were easily approached while avoiding damage to adjacent vessels. Bone biopsy was successfully performed without complications, but the hardness of bone tissue resulted in small and fragmented samples.Conclusions. Peroral transesophageal access into the posterior mediastinum and thoracic vertebral bone biopsy was feasible and safe. The proximity of the esophagus to the vertebral column provides close and direct access to the thoracic spine and opens up new ground for the performance of multilevel anterior spine procedures using NOTES techniques.


2016 ◽  
Vol 22 (3) ◽  
pp. 186-191
Author(s):  
S. Malik ◽  
P. Bordei ◽  
A. Rusali ◽  
D. M. Iliescu

Abstract Our study was conducted by consulting angioCT sites made on a CT GE LightSpeed VCT64 Slice CT and a CT GE LightSpeed 16 Slice CT, following the path and relationships of the descending thoracic aorta against the vertebral column, outside diameters thereof at the thoracic vertebrae T4, T7, T12 and posterior intercostal arteries characteristics. The origin of of the descending thoracic aorta we found most commonly on the left flank of the lower edge of the vertebral body T4, but I have encountered cases where it had come above the lower edge of T4 on level of intervertebral disc T4-T5 or even at the upper edge of T5 vertebral body. At thoracic vertebra T4, on a total of 30 cases, the descending thoracic aorta present a diameter of 20.0 to 32.6 mm, values that correspond to male gender and to females diameter ranging from 25.5 to 27, 4 mm. At level of T7 thoracic vertebra, thoracic aorta present a diameter of 19.6 to 29.5 mm, values found in men, in women the diameter being from 21.9 to 25.2 mm. At thoracic vertebra T12, on a total of 27 cases, the descending thoracic aorta present a diameter of 17.6 to 27.7 mm, in males the diameter was from 17.6 to 27.7 mm and females diameter ranging from 21.1 to 25.2. The length of the descending thoracic aorta was from 18.40 to 19.41 cm.


Development ◽  
2000 ◽  
Vol 127 (11) ◽  
pp. 2259-2267 ◽  
Author(s):  
M. Leitges ◽  
L. Neidhardt ◽  
B. Haenig ◽  
B.G. Herrmann ◽  
A. Kispert

The axial skeleton develops from the sclerotome, a mesenchymal cell mass derived from the ventral halves of the somites, segmentally repeated units located on either side of the neural tube. Cells from the medial part of the sclerotome form the axial perichondral tube, which gives rise to vertebral bodies and intervertebral discs; the lateral regions of the sclerotome will form the vertebral arches and ribs. Mesenchymal sclerotome cells condense and differentiate into chondrocytes to form a cartilaginous pre-skeleton that is later replaced by bone tissue. Uncx4.1 is a paired type homeodomain transcription factor expressed in a dynamic pattern in the somite and sclerotome. Here we show that mice homozygous for a targeted mutation of the Uncx4.1 gene die perinatally and exhibit severe malformations of the axial skeleton. Pedicles, transverse processes and proximal ribs, elements derived from the lateral sclerotome, are lacking along the entire length of the vertebral column. The mesenchymal anlagen for these elements are formed initially, but condensation and chondrogenesis do not occur. Hence, Uncx4.1 is required for the maintenance and differentiation of particular elements of the axial skeleton.


2017 ◽  
Vol 62 (No. 4) ◽  
pp. 204-210 ◽  
Author(s):  
S. Ozkadif ◽  
E. Eken ◽  
MO Dayan ◽  
K. Besoluk

This study was undertaken to obtain and analyse, on the basis of sex, three-dimensional (3D) reconstructions obtained by a 3D computer program from two-dimensional (2D) vertebral column sections taken by multidetector computed tomography (MDCT) images, in the chinchilla. A total of 16 adult chinchillas (Chinchilla lanigera) of both sexes were used. The MDCT images were taken under general anaesthesia, and were then transferred to a personal computer on which 3D reconstructions were carried out using a 3D modelling program (Mimics 13.1). The volume, surface area and vertebral body length of each vertebra (except caudal region) forming the vertebral column were measured from the 3D models created. The ratios (in percentage) of the measurements of each vertebra (except the sacral ones) forming the vertebral column region (cervical part, thoracic part, lumbar part) were determined for statistical analysis. We detected significant differences (P < 0.05) between sexes in all vertebrae forming the vertebral column of the chinchilla with respect to volume, surface area and vertebral body length, except for C6 and L1. This study is the first to carry out 3D reconstructions of data obtained from CT images in the chinchilla and the obtained results contribute to a more detailed understanding of the anatomy of this species. Our strategy may also be useful for the design of experiments exploring the vertebral column in domestic mammals and humans.


Sign in / Sign up

Export Citation Format

Share Document