Diversity of Capsular Polysaccharide Synthesis Gene Clusters in Streptococcus pneumoniae

1998 ◽  
Vol 123 (5) ◽  
pp. 937-945 ◽  
Author(s):  
M. A.B. Kolkman ◽  
B. A.M. van der Zeijst ◽  
P. J.M. Nuijten
Microbiology ◽  
2009 ◽  
Vol 155 (12) ◽  
pp. 4170-4183 ◽  
Author(s):  
Hung-Yu Shu ◽  
Chang-Phone Fung ◽  
Yen-Ming Liu ◽  
Keh-Ming Wu ◽  
Ying-Tsong Chen ◽  
...  

Klebsiella pneumoniae is an enteric pathogen causing community-acquired and hospital-acquired infections in humans. Epidemiological studies have revealed significant diversity in capsular polysaccharide (CPS) type and clinical manifestation of K. pneumoniae infection in different geographical areas of the world. We have sequenced the capsular polysaccharide synthesis (cps) region of seven clinical isolates and compared the sequences with the publicly available cps sequence data of five strains: NTUH-K2044 (K1 serotype), Chedid (K2 serotype), MGH78578 (K52 serotype), A1142 (K57 serotype) and A1517. Among all strains, six genes at the 5′ end of the cps clusters that encode proteins for CPS transportation and processing at the bacterial surface are highly similar to each other. The central region of the cps gene clusters, which encodes proteins for polymerization and assembly of the CPS subunits, is highly divergent. Based on the collected sequence, we found that either the wbaP gene or the wcaJ gene exists in a given K. pneumoniae strain, suggesting that there is a major difference in the CPS biosynthesis pathway and that the K. pneumoniae strains can be classified into at least two distinct groups. All isolates contain gnd, encoding gluconate-6-phosphate dehydrogenase, at the 3′ end of the cps gene clusters. The rmlBADC genes were found in CPS K9-positive, K14-positive and K52-positive strains, while manC and manB were found in K1, K2, K5, K14, K62 and two undefined strains. Our data indicate that, while overall genomic organization is similar between different pathogenic K. pneumoniae strains, the genetic variation of the sugar moiety and polysaccharide linkage generate the diversity in CPS molecules that could help evade host immune attack.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yi-Jiun Pan ◽  
Tzu-Lung Lin ◽  
Chun-Tang Chen ◽  
Yi-Yin Chen ◽  
Pei-Fang Hsieh ◽  
...  

2003 ◽  
Vol 71 (11) ◽  
pp. 6192-6198 ◽  
Author(s):  
Saskia van Selm ◽  
Lisette M. van Cann ◽  
Marc A. B. Kolkman ◽  
Bernard A. M. van der Zeijst ◽  
Jos P. M. van Putten

ABSTRACT In a search for the genetic basis for the structural difference between the related Streptococcus pneumoniae capsular serotypes 15B and 15C and for the reported reversible switching between these serotypes, the corresponding capsular polysaccharide synthesis (cps) loci were investigated by keeping in mind that at the structural level, the capsules differ only in O acetylation. The cps locus of a serotype 15B strain was identified, partially PCR amplified with primers based on the related serotype 14 sequence, and sequenced. Sequence analysis revealed, among other open reading frames, an intact open reading frame (designated cps15bM) whose product, at the protein level, exhibited characteristics of previously identified acetyltransferases. Genetic analysis of the corresponding region in a serotype15C strain indicated that the same gene was present but had a premature stop in translation. Closer analysis indicated that the serotype 15B gene contained a short tandem TA repeat consisting of eight TA units. In serotype 15C, this gene contained nine TA units that resulted in a frameshift and a truncated product. Genetic analysis of 17 serotype 15B and 15C clinical isolates revealed a perfect correlation between the serotype and the length of the short tandem repeat in the putative O-acetyltransferase gene. The number of TA repeating units varied between seven and nine in the various isolates. Together, the data strongly suggest that the structural difference between serotypes 15B and 15C is based on variation in the short tandem TA repeat in the O-acetyltransferase gene and that the transition between serotypes is due to slipped-strand mispairing with deletion or insertion of TA units in the cps15bM gene.


2003 ◽  
Vol 69 (12) ◽  
pp. 7364-7370 ◽  
Author(s):  
Krzysztof Trzcinski ◽  
Claudette M. Thompson ◽  
Marc Lipsitch

ABSTRACT The polysaccharide capsule is the primary virulence factor in Streptococcus pneumoniae. There are at least 90 serotypes of S. pneumoniae, identified based on the immunogenicity of different capsular sugars. The aim of this study was to construct pneumococcal strains that are isogenic except for capsular type. Serotype 4 strain TIGR4 was rendered unencapsulated by recombinational replacement of the capsular polysaccharide synthesis (cps) locus with the bicistronic Janus cassette (C. K. Sung, J. P. Claverys, and D. A. Morrison, Appl. Environ. Microbiol. 67:5190-5196, 2001). In subsequent transformation with chromosomal DNA, the cassette was replaced by the cps locus derived from a strain of a different serotype, either 6B, 7F, 14, or 19F. To minimize the risk of uncontrolled recombinational replacements in loci other than cps, the TIGRcps::Janus strain was“ backcross” transformed three times with chromosomal DNA of subsequently constructed capsular type transformants. Capsular serotypes were confirmed in all new capsule variants by the Quellung reaction. Restriction fragment length polymorphism (RFLP) analysis of the cps locus confirmed the integrity of the cps region transformed into the TIGR strain, and RFLP of the flanking regions confirmed their identities with the corresponding regions of the recipient. Transformants had in vitro growth rates greater than or equal to that of TIGR4. All four strains were able to colonize C57BL/6 mice (female, 6 weeks old) for at least 7 days when mice were intranasally inoculated with 6 × 106 to 8 × 106 CFU. The constructed capsular variants of TIGR4 are suitable for use in studies on the role of S. pneumoniae capsular polysaccharide in immunity, colonization, and pathogenesis.


2001 ◽  
Vol 69 (3) ◽  
pp. 1244-1255 ◽  
Author(s):  
Sheng-Mei Jiang ◽  
Lei Wang ◽  
Peter R. Reeves

ABSTRACT Capsular polysaccharide (CPS) is a major virulence factor inStreptococcus pneumoniae. CPS gene clusters of S. pneumoniae types 4, 6B, 8, and 18C were sequenced and compared with those of CPS types 1, 2, 14, 19F, 19A, 23F, and 33F. All have the same four genes at the 5′ end, encoding proteins thought to be involved in regulation and export. Sequences of these genes can be divided into two classes, and evidence of recombination between them was observed. Next is the gene encoding the transferase for the first step in the synthesis of CPS. The predicted amino acid sequences of these first sugar transferases have multiple transmembrane segments, a feature lacking in other transferases. Sugar pathway genes are located at the 3′ end of the gene cluster. Comparison of the four dTDP-l-rhamnose pathway genes (rml genes) of CPS types 1, 2, 6B, 18C, 19F, 19A, and 23F shows that they have the same gene order and are highly conserved. There is a gradient in the nature of the variation of rml genes, the average pairwise difference for those close to the central region being higher than that for those close to the end of the gene cluster and, again, recombination sites can be observed in these genes. This is similar to the situation we observed for rml genes of O-antigen gene clusters of Salmonella enterica. Our data indicate that the conserved first four genes at the 5′ ends and the relatively conservedrml genes at the 3′ ends of the CPS gene clusters were sites for recombination events involved in forming new forms of CPS. We have also identified wzx and wzy genes for all sequenced CPS gene clusters by use of motifs.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yun-Dan Zheng ◽  
Ying Pan ◽  
Ke He ◽  
Nan Li ◽  
Donghong Yang ◽  
...  

ABSTRACT Streptococcus pneumoniae, a Gram-positive human pathogen, causes a series of serious diseases in humans. SPD_1495 from S. pneumoniae is annotated as a hypothetical ABC sugar-binding protein in the NCBI database, but there are few reports on detailed biological functions of SPD_1495. To fully study the influence of SPD_1495 on bacterial virulence in S. pneumoniae, we constructed a deletion mutant (D39Δspd1495) and an overexpressing strain (D39spd1495+). Comparative analysis of iTRAQ-based quantitative proteomic data of the wild-type D39 strain (D39-WT) and D39Δspd1495 showed that several differentially expressed proteins that participate in capsular polysaccharide synthesis, such as Cps2M, Cps2C, Cps2L, Cps2T, Cps2E, and Cps2D, were markedly upregulated in D39Δspd1495. Subsequent transmission electron microscopy and uronic acid detection assay confirmed that capsular polysaccharide synthesis was enhanced in D39Δspd1495 compared to that in D39-WT. Moreover, knockout of spd1495 resulted in increased capsular polysaccharide synthesis, as well as increased bacterial virulence, as confirmed by the animal study. Through a coimmunoprecipitation assay, surface plasmon resonance, and electrophoretic mobility shift assay, we found that SPD_1495 negatively regulated cps promoter expression by interacting with phosphorylated ComE, a negative transcriptional regulator for capsular polysaccharide formation. Overall, this study suggested that SPD_1495 negatively regulates capsular polysaccharide formation and thereby enhances bacterial virulence in the host. These findings also provide valuable insights into understanding the biology of this clinically important bacterium. IMPORTANCE Capsular polysaccharide is a key factor underlying the virulence of Streptococcus pneumoniae in human diseases. Thus, a deep understanding of capsular polysaccharide synthesis is essential for uncovering the pathogenesis of S. pneumoniae infection. In this study, we show that protein SPD_1495 interacts with phosphorylated ComE to negatively regulate the formation of capsular polysaccharide. Deletion of spd1495 increased capsular polysaccharide synthesis and thereby enhanced bacterial virulence. These findings further reveal the synthesis mechanism of capsular polysaccharide and provide new insight into the biology of this clinically important bacterium.


Sign in / Sign up

Export Citation Format

Share Document