Semi-Empirical Estimation of Deposition Velocity of Unattached Radon Daughters in a Room

1993 ◽  
Vol 46 (2) ◽  
pp. 103-109 ◽  
Author(s):  
H. Kojima ◽  
S. Abe ◽  
K. Fujitaka
2018 ◽  
Vol 6 (2) ◽  
pp. 190
Author(s):  
Abimbola Ogunsipe

A semi-empirical determination of ground and excited state dipole moments of zinc phthalocyanine (ZnPc) from solvatochromic shifts is hereby presented. The ratio of the excited- and ground-state dipole moments of ZnPc ( ) was estimated by a combination of the Bakshiev and the Kawski-Chamma-Viallet’s equations, while the difference in the excited- and ground-state dipole moments (Dm) was estimated usingthe molecular-microscopic solvent polarity parameters ( ), alongside the Stokes’ shifts (Dῡ) in the various solvents. The dipole moment of ZnPc is significantly higher in the excited singlet state (me = 3.12 D) than in the ground state (mg = 1.50 D). Obviously charge separation is greater in the excited state of ZnPc than in its ground state.  


2019 ◽  
Vol 51 (8) ◽  
Author(s):  
Teng-Cheong Ong ◽  
Theodore A. Steinberg ◽  
Esa Jaatinen ◽  
John Bell

2017 ◽  
Vol 17 (4) ◽  
pp. 3055-3066 ◽  
Author(s):  
Mehliyar Sadiq ◽  
Amos P. K. Tai ◽  
Danica Lombardozzi ◽  
Maria Val Martin

Abstract. Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone–vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land–atmosphere simulations. With ozone–vegetation coupling, present-day surface ozone is simulated to be higher by up to 4–6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ∼ 40–100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone–vegetation feedbacks. Our results highlight the need to consider two-way ozone–vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.


2016 ◽  
Author(s):  
Mehliyar Sadiq ◽  
Amos P. K. Tai ◽  
Danica Lombardozzi ◽  
Maria Val Martin

Abstract. Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ~ 40–100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity (which are significant per se) are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.


2021 ◽  
Vol 67 (No. 7) ◽  
pp. 318-327
Author(s):  
Andrii Bilous ◽  
Viktor Myroniuk ◽  
Viktor Svynchuk ◽  
Oleksandr Soshenskyi ◽  
Oleksandr Lesnik ◽  
...  

In January 2019 the forest industry in Ukraine adopted European standards for measuring and grading of round wood based on mid-point diameters, which caused major discrepancies from traditionally used estimates of timber volume using top diameters. To compare methods of merchantable wood volume estimation, we investigated the stem form inside bark for two dominant tree species in Ukraine, i.e. Scots pine (Pinus sylvestris L.) and common oak (Quercus robur L.). We used tree stem measurements to fit stem profile equations, whereas simulation was applied to derive log taper. We found that Newnham's (1992) variable-exponent taper equation performed well for predicting stem taper for both tree species. Then, we simulated the structure of harvested wood, so that it replicated annual distribution of logs by their length and diameters. As a result, the average log taper was estimated at 0.836 ÷ 0.855 cm·m<sup>–1</sup> and 1.180 ÷ 0.121 cm·m<sup>–1</sup> for pine and oak, respectively. The study also indicated that log taper varied along stems. The higher rates of diameter decrease were found for butt logs, for which the taper was 2.5–3.5 times higher than its average for the whole stem. The results of our study ensure the stacked round wood volume conversion between estimates obtained using top and mid-point diameters.


Sign in / Sign up

Export Citation Format

Share Document