scholarly journals Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

2016 ◽  
Author(s):  
Mehliyar Sadiq ◽  
Amos P. K. Tai ◽  
Danica Lombardozzi ◽  
Maria Val Martin

Abstract. Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ~ 40–100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity (which are significant per se) are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

2017 ◽  
Vol 17 (4) ◽  
pp. 3055-3066 ◽  
Author(s):  
Mehliyar Sadiq ◽  
Amos P. K. Tai ◽  
Danica Lombardozzi ◽  
Maria Val Martin

Abstract. Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone–vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land–atmosphere simulations. With ozone–vegetation coupling, present-day surface ozone is simulated to be higher by up to 4–6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ∼ 40–100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone–vegetation feedbacks. Our results highlight the need to consider two-way ozone–vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.


2019 ◽  
Author(s):  
Lang Wang ◽  
Amos P. K. Tai ◽  
Chi-Yung Tam ◽  
Mehliyar Sadiq ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) is an important air pollutant and greenhouse gas. Land use and land cover (LULC) is one of the critical factors influencing ozone, in addition to anthropogenic emissions and climate. LULC change can on the one hand affect ozone biogeochemically, i.e., via dry deposition and biogenic emissions of volatile organic compounds (VOCs). LULC change can on the other hand alter regional- to large-scale climate through modifying albedo and evapotranspiration, which can lead to changes in surface temperature, hydrometeorology and atmospheric circulation that can ultimately impact ozone biogeophysically over local and remote areas. Such biogeophysical effects of LULC on ozone are largely understudied. This study investigates the individual and combined biogeophysical and biogeochemical effects of LULC on ozone, and explicitly examines the critical pathway for how LULC change impacts ozone pollution. A global coupled atmosphere–chemistry–land model is driven by projected LULC changes from the present day (2000) to future (2050) under RCP4.5 and RCP8.5 scenarios, focusing on the boreal summer. Results reveal that when considering biogeochemical effects only, surface ozone is predicted to have slight changes by up to 2 ppbv maximum in some areas due to LULC changes. It is primarily driven by changes in isoprene emission and dry deposition counteracting each other in shaping ozone. In contrast, when considering the integrated effect of LULC, ozone is more substantially altered by up to 6 ppbv over several regions, reflecting the importance of biogeophysical effects on ozone changes. Furthermore, large areas of these ozone changes are found over the regions without LULC changes where the biogeophysical effect is the only pathway for such changes. The mechanism is likely that LULC change induces a regional circulation response, in particular the formation of anomalous stationary high-pressure systems, shifting of moisture transport, and near-surface warming over the middle-to-high northern latitudes in boreal summer, owing to associated changes in albedo and surface energy budget. Such temperature changes then alter ozone substantially. We conclude that the biogeophysical effect of LULC is an important pathway for the influence of LULC change on ozone air quality over both local and remote regions, even in locations without significant LULC changes. Overlooking the impact of biogeophysical effect may cause evident underestimation of the impacts of LULC change on ozone pollution.


2018 ◽  
Vol 18 (19) ◽  
pp. 14133-14148 ◽  
Author(s):  
Shan S. Zhou ◽  
Amos P. K. Tai ◽  
Shihan Sun ◽  
Mehliyar Sadiq ◽  
Colette L. Heald ◽  
...  

Abstract. Tropospheric ozone is an air pollutant that substantially harms vegetation and is also strongly dependent on various vegetation-mediated processes. The interdependence between ozone and vegetation may constitute feedback mechanisms that can alter ozone concentration itself but have not been considered in most studies to date. In this study we examine the importance of dynamic coupling between surface ozone and leaf area index (LAI) in shaping ozone air quality and vegetation. We first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM) and simulate the steady-state responses of LAI to long-term exposure to a range of prescribed ozone levels (from 0 to 100 ppb). We find that most plant functional types suffer a substantial decline in LAI as ozone level increases. Based on the CLM-simulated results, we develop and implement in the GEOS-Chem chemical transport model a parameterization that computes fractional changes in monthly LAI as a function of local mean ozone levels. By forcing LAI to respond to ozone concentrations on a monthly timescale, the model simulates ozone–LAI coupling dynamically via biogeochemical processes including biogenic volatile organic compound (VOC) emissions and dry deposition, without the complication from meteorological changes. We find that ozone-induced damage on LAI can lead to changes in ozone concentrations by −1.8 to +3 ppb in boreal summer, with a corresponding ozone feedback factor of −0.1 to +0.6 that represents an overall self-amplifying effect from ozone–LAI coupling. Substantially higher simulated ozone due to strong positive feedbacks is found in most tropical forests, mainly due to the ozone-induced reductions in LAI and dry deposition velocity, whereas reduced isoprene emission plays a lesser role in these low-NOx environments. In high-NOx regions such as the eastern US, Europe, and China, however, the feedback effect is much weaker and even negative in some regions, reflecting the compensating effects of reduced dry deposition and reduced isoprene emission (which reduces ozone in high-NOx environments). In remote, low-LAI regions, including most of the Southern Hemisphere, the ozone feedback is generally slightly negative due to the reduced transport of NOx–VOC reaction products that serve as NOx reservoirs. This study represents the first step to accounting for dynamic ozone–vegetation coupling in a chemical transport model with ramifications for a more realistic joint assessment of ozone air quality and ecosystem health.


2020 ◽  
Vol 13 (3) ◽  
pp. 1137-1153 ◽  
Author(s):  
Yadong Lei ◽  
Xu Yue ◽  
Hong Liao ◽  
Cheng Gong ◽  
Lin Zhang

Abstract. The terrestrial biosphere and atmospheric chemistry interact through multiple feedbacks, but the models of vegetation and chemistry are developed separately. In this study, the Yale Interactive terrestrial Biosphere (YIBs) model, a dynamic vegetation model with biogeochemical processes, is implemented into the Chemical Transport Model GEOS-Chem (GC) version 12.0.0. Within this GC-YIBs framework, leaf area index (LAI) and canopy stomatal conductance dynamically predicted by YIBs are used for dry deposition calculation in GEOS-Chem. In turn, the simulated surface ozone (O3) by GEOS-Chem affect plant photosynthesis and biophysics in YIBs. The updated stomatal conductance and LAI improve the simulated O3 dry deposition velocity and its temporal variability for major tree species. For daytime dry deposition velocities, the model-to-observation correlation increases from 0.69 to 0.76, while the normalized mean error (NME) decreases from 30.5 % to 26.9 % using the GC-YIBs model. For the diurnal cycle, the NMEs decrease by 9.1 % for Amazon forests, 6.8 % for coniferous forests, and 7.9 % for deciduous forests using the GC-YIBs model. Furthermore, we quantify the damaging effects of O3 on vegetation and find a global reduction of annual gross primary productivity by 1.5 %–3.6 %, with regional extremes of 10.9 %–14.1 % in the eastern USA and eastern China. The online GC-YIBs model provides a useful tool for discerning the complex feedbacks between atmospheric chemistry and the terrestrial biosphere under global change.


2020 ◽  
Author(s):  
Tamara Emmerichs ◽  
Huug Ouwersloot ◽  
Astrid Kerkweg ◽  
Silvano Fares ◽  
Ivan Mammarella ◽  
...  

<p>Surface ozone is a harmful air pollutant, heavily influenced by chemical production and loss processes. Dry deposition to vegetation is a relevant loss process responsible for 20 % of the total tropospheric ozone loss. Its parametrization in atmospheric chemistry models represents a major source of uncertainty for the global tropospheric ozone budget and might account for the mismatch with observations. The model used in this study, the Modular Earth Submodel System (MESSy2) linked to ECHAM5 as atmospheric circulation model (EMAC) is no exception. Like many global models, EMAC employs a “resistances in series” scheme with the major surface deposition via plant stomata which is hardly sensitive to meteorology depending only on solar radiation. Unlike many global models, however, EMAC uses a simplified high resistance for non-stomatal deposition which makes this pathway negligible.                             </p><p>Hence, a revision of the dry deposition scheme of EMAC is desirable. The scheme has been extended with empirical adjustment factors to predict stomatal responses to temperature and vapour pressure deficit. Furthermore, an explicit formulation of humidity depending non-stomatal deposition at the leaf surface (cuticle) has been implemented based on established schemes. Next, the soil moisture availability function for plants has been critically reviewed and modified in order to avoid a stomatal closure where the model shows a strong soil dry bias, e.g. Amazon basin in dry season.</p><p>The last part of the presentation will show comparisons of dry deposition velocities and fluxes comparing simulations with data obtained from four experimental sites where ozone deposition is measured with micrometeorological techniques. The impacts of the changes on daily and seasonal patterns of ozone dry deposition will be discussed with a highlight on surface ozone, global distribution and budget.</p>


2020 ◽  
Author(s):  
Meiyun Lin ◽  
Larry Horowitz ◽  
Yuanyu Xie ◽  
Fabien Paulot ◽  
Sergey Malyshev ◽  
...  

<p>This study highlights a previously under-appreciated “climate penalty” feedback mechanism - namely, substantial reductions of ozone uptake by water stressed vegetation – as a missing piece to the puzzle of why European ozone pollution episodes have not decreased as expected in recent decades, despite marked reductions in regional emissions of ozone precursors due to regulatory changes. The most extreme ozone pollution episodes are linked to heatwaves and droughts, which are increasing in frequency and intensity over Europe, with severe impacts on natural and human systems. Under drought stress, plants close their stomata to reduce water loss, consequently limiting the ozone uptake by vegetation (a component of dry deposition), leading to increased surface ozone concentrations. Such land-biosphere feedbacks are often overlooked in prior air quality projections, owing to a lack of process-based model formulations. Here, we use six decades of observations and Earth system model simulations (1960-2018) with an interactive dry deposition scheme to show that declining ozone removal by water-stressed vegetation in the warming climate exacerbate ozone air pollution over Europe. Incorporated into a dynamic vegetation land – atmospheric chemistry – climate model, the dry deposition scheme mechanistically describes the response of ozone deposition to atmospheric CO<sub>2 </sub>concentration, canopy air vapor pressure deficit, and soil water availability. Our observational and modeling analyses reveal drought stress causing as much as 70% reductions in ozone removal by forests. Reduced ozone removal by water-stressed vegetation worsens peak ozone episodes during European mega-droughts, such as the 2003 event, offsetting much of the air quality improvements gained from regional emission controls. Accounting for vegetation feedbacks leads to a three-fold increase in high surface ozone events above 80 ppbv (8-hour average) and a 20% increase in the sensitivity of ozone pollution extremes (95<sup>th </sup>percentile) to increasing temperature. As the frequency of hot and dry summers is expected to increase in the coming decades, this ozone climate penalty could be severe and therefore needs to be considered when designing clean air policy in the European Union. </p><p>Notes: This study is currently under review for possible publication in Nature Climate Change. </p>


2017 ◽  
Vol 17 (16) ◽  
pp. 9781-9796 ◽  
Author(s):  
Yuanhong Zhao ◽  
Lin Zhang ◽  
Amos P. K. Tai ◽  
Youfan Chen ◽  
Yuepeng Pan

Abstract. Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface–atmosphere exchange. Here we combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model, CLM) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by the addition of atmospheric deposited nitrogen – namely, emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a−1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index, LAI, in the model), could increase surface ozone from increased biogenic VOC emissions (e.g., a 6.6 Tg increase in isoprene emission), but it could also decrease ozone due to higher ozone dry deposition velocities (up to 0.02–0.04 cm s−1 increases). Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations shows general increases over the globe (up to 1.5–2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5–1.0 ppbv decreases over the eastern US, western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate- and land-use-driven surface ozone changes at regional scales and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere–atmosphere interactions, which can have important implications for future air quality prediction.


2019 ◽  
Author(s):  
Yadong Lei ◽  
Xu Yue ◽  
Hong Liao ◽  
Cheng Gong ◽  
Lin Zhang

Abstract. The terrestrial biosphere and atmospheric chemistry interact through multiple feedbacks, but the models of vegetation and chemistry are developed separately. In this study, the Yale Interactive terrestrial Biosphere (YIBs) model, a dynamic vegetation model with biogeochemical processes, is implemented into the Chemical Transport Model GEOS-Chem version 12.0.0. Within the GC-YIBs framework, leaf area index (LAI) and canopy stomatal conductance dynamically predicted by YIBs are used for dry deposition calculation in GEOS-Chem. In turn, the simulated surface ozone (O3) by GEOS-Chem affect plant photosynthesis and biophysics in YIBs. The updated stomatal conductance and LAI improve the simulated daytime O3 dry deposition velocity for major tree species. Compared with the GEOS-Chem model, the model-to-observation correlation for dry deposition velocities increases from 0.76 to 0.85 while the normalized mean error decreases from 35 % to 27 % using the GC-YIBs model. Furthermore, we quantify O3 vegetation damaging effects and find a global reduction of annual gross primary productivity by 2–5 %, with regional extremes of 11–15 % in the eastern U.S. and eastern China. The online GC-YIBs model provides a useful tool for discerning the complex feedbacks between atmospheric chemistry and terrestrial biosphere under global change.


2012 ◽  
Vol 12 (10) ◽  
pp. 27173-27218 ◽  
Author(s):  
Y. Xie ◽  
F. Paulot ◽  
W. P. L. Carter ◽  
C. G. Nolte ◽  
D. J. Luecken ◽  
...  

Abstract. The CMAQ model in combination with observations for INTEX-NA/ICARTT 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA Community Multiscale Air Quality (CMAQ) model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2) recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination in the Southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs) and their relationship with O3, by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 h or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of isoprene oxidation pathways, the rate of NOx recycling from isoprene nitrates, and the fate of the secondary, tertiary, and further oxidation products of isoprene.


Sign in / Sign up

Export Citation Format

Share Document