Semi-empirical estimation of ion-specific cross sections in electron ionization of molecules

2016 ◽  
Vol 145 (22) ◽  
pp. 224102 ◽  
Author(s):  
Karl K. Irikura
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


1999 ◽  
Vol 5 (S2) ◽  
pp. 584-585
Author(s):  
X. Llovet ◽  
C. Merlet ◽  
J.M. Fernández-Varea ◽  
F. Salvat

Knowledge of inner-shell ionization cross sections by electron impact is needed for quantitative procedures in electron probe microanalysis (EPMA) and Auger electron spectroscopy (AES) The common practice is to use semi-empirical formulas, based on the asymptotic limit of the Bethe theory, which sometimes are used beyond their domain of validity. Experimental measurements of ionization cross sections are scarce and affected by considerable uncertainties, thus a mere comparison with experimental data does not permit to draw a definite conclusion abou the accuracy of the various formulas. In this communication, we present new measurements o the relative variation of K- and L-shell ionization cross sections deduced from the counting rate of characteristic x-rays emitted by extremely thin films of Cr, Ni, Cu, Te, Au and Bi bombardec by keV electrons.The studied films were produced by thermal evaporation on backing self-supported 30 nm carbon films.


2021 ◽  
pp. 2150168
Author(s):  
Hasan Özdoğan ◽  
Yiğit Ali Üncü ◽  
Mert Şekerci ◽  
Abdullah Kaplan

In this paper, calculations of the [Formula: see text] reaction cross-sections at 14.5 MeV have been presented by utilizing artificial neural network algorithms (ANNs). The systematics are based on the account for the non-equilibrium reaction mechanism and the corresponding analytical formulas of the pre-equilibrium exciton model. Experimental results, obtained from the EXFOR database, have been used to train the ANN with the Levenberg–Marquardt (LM) algorithm which is a feed-forward algorithm and is considered one of the well-known and most effective methods in neural networks. The Regression [Formula: see text] values for the ANN estimation have been determined as 0.9998, 0.9927 and 0.9895 for training, testing and for all process. The [Formula: see text] reaction cross-sections have been reproduced with the TALYS 1.95 and the EMPIRE 3.2 codes. In summary, it has been demonstrated that the ANN algorithms can be used to calculate the [Formula: see text] reaction cross-section with the semi-empirical systematics.


Author(s):  
Reignard Tan ◽  
Terje Kanstad ◽  
Mette R. Geiker ◽  
Max A. N. Hendriks

<p>Motivated by the establishment of a Ferry-Free E39 coastal highway route, crack width calculation methods for design of large-scale concrete structures are discussed. It is argued that the current semi-empirical formulas recommended by Eurocode 2 is inconsistent and overly conservative for cross sections with large bar diameters and covers. A suggestion to formulating a more consistent crack width calculation method is given.</p>


Sign in / Sign up

Export Citation Format

Share Document