Semi-empirical estimation and experimental validation of the mass and the center of gravity location of the unmanned aerial system — UAS-S4 of hydra technologies

Author(s):  
Yvan Tondji ◽  
Ruxandra Botez
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5863
Author(s):  
Massimo Cardone ◽  
Bonaventura Gargiulo

This paper presents a virtual model of a scroll compressor developed on the one-dimensional analysis software Simcenter Amesim®. The model is semi-empirical: it needs some physical details of the modelled machine (e.g., the cubic capacity), but, on the other hand, it does not require the geometrical features of the spirals, so it needs experimental data to calibrate it. The model also requires rotational speed and the outlet temperature as boundary conditions. The model predicts the power consumption and the mass flow rate and considers leakages and mechanical losses. After the model presentation, this paper describes the test bench and the obtained data used to calibrate and validate the model. At last, the calibration process is described, and the results are discussed. The calculated values fit the experimental data also in extrapolation, despite the model is simple and performs calculations within 7 s. Due to these characteristics, the model is suitable for being used in a larger model as a sub-component.


2018 ◽  
Vol 6 (2) ◽  
pp. 190
Author(s):  
Abimbola Ogunsipe

A semi-empirical determination of ground and excited state dipole moments of zinc phthalocyanine (ZnPc) from solvatochromic shifts is hereby presented. The ratio of the excited- and ground-state dipole moments of ZnPc ( ) was estimated by a combination of the Bakshiev and the Kawski-Chamma-Viallet’s equations, while the difference in the excited- and ground-state dipole moments (Dm) was estimated usingthe molecular-microscopic solvent polarity parameters ( ), alongside the Stokes’ shifts (Dῡ) in the various solvents. The dipole moment of ZnPc is significantly higher in the excited singlet state (me = 3.12 D) than in the ground state (mg = 1.50 D). Obviously charge separation is greater in the excited state of ZnPc than in its ground state.  


2019 ◽  
Vol 51 (8) ◽  
Author(s):  
Teng-Cheong Ong ◽  
Theodore A. Steinberg ◽  
Esa Jaatinen ◽  
John Bell

2019 ◽  
Vol 106 ◽  
pp. 308-326 ◽  
Author(s):  
Fernando M. Tello-Oquendo ◽  
Emilio Navarro-Peris ◽  
Francisco Barceló-Ruescas ◽  
José Gonzálvez-Maciá

2021 ◽  
Vol 67 (No. 7) ◽  
pp. 318-327
Author(s):  
Andrii Bilous ◽  
Viktor Myroniuk ◽  
Viktor Svynchuk ◽  
Oleksandr Soshenskyi ◽  
Oleksandr Lesnik ◽  
...  

In January 2019 the forest industry in Ukraine adopted European standards for measuring and grading of round wood based on mid-point diameters, which caused major discrepancies from traditionally used estimates of timber volume using top diameters. To compare methods of merchantable wood volume estimation, we investigated the stem form inside bark for two dominant tree species in Ukraine, i.e. Scots pine (Pinus sylvestris L.) and common oak (Quercus robur L.). We used tree stem measurements to fit stem profile equations, whereas simulation was applied to derive log taper. We found that Newnham's (1992) variable-exponent taper equation performed well for predicting stem taper for both tree species. Then, we simulated the structure of harvested wood, so that it replicated annual distribution of logs by their length and diameters. As a result, the average log taper was estimated at 0.836 ÷ 0.855 cm·m<sup>–1</sup> and 1.180 ÷ 0.121 cm·m<sup>–1</sup> for pine and oak, respectively. The study also indicated that log taper varied along stems. The higher rates of diameter decrease were found for butt logs, for which the taper was 2.5–3.5 times higher than its average for the whole stem. The results of our study ensure the stacked round wood volume conversion between estimates obtained using top and mid-point diameters.


Sign in / Sign up

Export Citation Format

Share Document