scholarly journals Elliptical Lens Model in PG 1115+080

1998 ◽  
Vol 50 (1) ◽  
pp. 175-186
Author(s):  
Katsuaki Asano ◽  
Takeshi Fukuyama
Keyword(s):  

2006 ◽  
Author(s):  
Sarah Miller ◽  
Alex Kirlik
Keyword(s):  




1997 ◽  
Author(s):  
Gregory L. Brake ◽  
Michael E. Doherty ◽  
Gernot D. Kleiter
Keyword(s):  


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhen Li ◽  
Sumin Gu ◽  
Yumeng Quan ◽  
Kulandaiappan Varadaraj ◽  
Jean X. Jiang

AbstractCongenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.



2005 ◽  
Vol 22 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Brendon J. Brewer ◽  
Geraint F. Lewis

AbstractGravitational lensing can magnify a distant source, revealing structural detail which is normally unresolvable. Recovering this detail through an inversion of the influence of gravitational lensing, however, requires optimisation of not only lens parameters, but also of the surface brightness distribution of the source. This paper outlines a new approach to this inversion, utilising genetic algorithms to reconstruct the source profile. In this initial study, the effects of image degradation due to instrumental and atmospheric effects are neglected and it is assumed that the lens model is accurately known, but the genetic algorithm approach can be incorporated into more general optimisation techniques, allowing the optimisation of both the parameters for a lensing model and the surface brightness of the source.



2021 ◽  
Vol 504 (2) ◽  
pp. 2224-2234
Author(s):  
Nan Li ◽  
Christoph Becker ◽  
Simon Dye

ABSTRACT Measurements of the Hubble–Lemaitre constant from early- and local-Universe observations show a significant discrepancy. In an attempt to understand the origin of this mismatch, independent techniques to measure H0 are required. One such technique, strong lensing time delays, is set to become a leading contender amongst the myriad methods due to forthcoming large strong lens samples. It is therefore critical to understand the systematic effects inherent in this method. In this paper, we quantify the influence of additional structures along the line of sight by adopting realistic light-cones derived from the cosmoDC2 semi-analytical extragalactic catalogue. Using multiple-lens plane ray tracing to create a set of simulated strong lensing systems, we have investigated the impact of line-of-sight structures on time-delay measurements and in turn, on the inferred value of H0. We have also tested the reliability of existing procedures for correcting for line-of-sight effects. We find that if the integrated contribution of the line-of-sight structures is close to a uniform mass sheet, the bias in H0 can be adequately corrected by including a constant external convergence κext in the lens model. However, for realistic line-of-sight structures comprising many galaxies at different redshifts, this simple correction overestimates the bias by an amount that depends linearly on the median external convergence. We therefore conclude that lens modelling must incorporate multiple-lens planes to account for line-of-sight structures for accurate and precise inference of H0.



2020 ◽  
pp. 089443932098012
Author(s):  
Teresa M. Harrison ◽  
Luis Felipe Luna-Reyes

While there is growing consensus that the analytical and cognitive tools of artificial intelligence (AI) have the potential to transform government in positive ways, it is also clear that AI challenges traditional government decision-making processes and threatens the democratic values within which they are framed. These conditions argue for conservative approaches to AI that focus on cultivating and sustaining public trust. We use the extended Brunswik lens model as a framework to illustrate the distinctions between policy analysis and decision making as we have traditionally understood and practiced them and how they are evolving in the current AI context along with the challenges this poses for the use of trustworthy AI. We offer a set of recommendations for practices, processes, and governance structures in government to provide for trust in AI and suggest lines of research that support them.



2009 ◽  
Vol 76 (7) ◽  
pp. 413
Author(s):  
Yu. Ts. Batomunkuev


Sign in / Sign up

Export Citation Format

Share Document